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ABSTRACT 

 A combination of the urban heat island effect and a rising temperature baseline resulting 

from global climate change inequitably impacts socially vulnerable populations residing in urban 

areas. This dissertation examines distributional inequity of exposure to urban heat by socially 

disadvantaged groups and minorities in the context of climate justice. Using Cutter’s hazards-of-

place model, variables indicative of social vulnerability and biophysical vulnerability are 

statistically tested for their associations. Biophysical vulnerability is conceptualized utilizing a 

urban heat risk index calculated from summer 2010 LANDSAT imagery to measure land surface 

temperature , structural density through the normalized difference built-up index, and vegetation 

abundance through the normalized difference vegetation index. A cross-section of twenty 

geographically distributed metropolitan statistical areas (MSAs) in the U.S. are examined using 

census derived variables at the tract level. The results of bivariate correlation analysis, ordinary 

least squares regression, and spatial autoregression analysis indicate consistent and significant 

associations between greater social disadvantage and higher urban heat levels. Multilevel 

modeling is used to examine the relationship of MSA-level segregation with tract-level minority 

status and social disadvantage to higher levels of urban heat. Segregation has a significant but 

varied relationship with the variables, indicating that there are inconsistent associations with 

urban heat due to differing urban ecologies. Urban heat and social vulnerability present a varying 

landscape of thermal inequity in different urban areas, associated in many cases with residential 

segregation.  
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CHAPTER ONE: 

INTRODUCTION 

The combined effects of two global trends, urbanization and climate change, have 

generated considerable concern regarding their adverse and disproportionate impacts on the 

health of urban populations. Urbanization increases population density and leads to the spatial 

expansion of cities, replacing vegetation with built structures of generally lower albedo, greater 

impervious surface area, and higher thermal mass (Golden 2004). Conventional methods of 

urban development which alter the thermal exchange between the land surface and lower 

atmosphere at a local scale, result in higher urban heat levels, a phenomenon referred to as the 

urban heat island (UHI) effect (Oke 1992). Urban heat is an important example of anthropogenic 

impact on the environment, specifically human/earth interaction through urbanization, which has 

received scant attention from urban geographers. On the other hand, the UHI has been a long-

standing topic of investigation by urban climatologists (Stewart 2010). Their efforts have been 

directed toward modeling the complex dynamics of the UHI at the lowest levels of the 

atmosphere, where surface, canopy, and boundary layers interact. Consequently, a descriptive 

approach to urban heat characterizes the work of urban climatologists and physical geographers. 

With a few exceptions, the study of the adverse health impacts of urban heat and heat waves has 

remained within the domain of public health or natural hazards research.   
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There are multiple social and physical factors which increase the risk from urban heat 

including urbanization, shifting demographic patterns, and climate change. Worldwide, the 

patterns of human habitation have become increasingly urbanized, exceeding 50 percent 

urbanization around 2008 (UNDESA 2011). Meanwhile, the population age structure, 

particularly those of post-industrial nations, is expected to become older as birthrates decrease 

and life spans increase (UNDESA 2002). These demographic shifts are occurring simultaneously 

as a higher global temperature baseline changes the climate of areas, causing weather to become 

more variable and subject to extremes (IPCC 2007). Already in North America there have been 

temperature increases of 0.17 to 0.25 degrees Celsius per decade since the 1970’s (USEPA 

2013). The increasing temperature baseline and greater extremes in high temperature seem 

related to a higher incidence of heat waves (Gaffen and Ross 1998; Hales et al. 2003; Meehl and 

Tebaldi 2004).  

 

Social Vulnerability 

Excessive heat, especially during heat waves, is among the foremost natural hazards 

related cause of fatality in the U.S. (NOAA NWS 2013). While urban climatologists and 

atmospheric scientists have defined a heat wave in multiple ways, it can be considered as two or 

more days of abnormally and uncomfortably hot and unusually humid weather conditions 

(NOAA NWS 2012). Urban heat is a causal factor in increased morbidity and mortality from 

heat exposure, and also contributes to other health issues, like cardiovascular and respiratory 

illnesses (Hales et al. 2003). Numerous empirical studies have reported increased rates of 

morbidity and mortality among socially vulnerable populations during heat waves in urban areas 
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(Kalkstein and Davis 1987; Kalkstein and Greene 1997; Whitman et al. 1997; O’Neill 2003; 

Sheridan, Kalkstein, A.J., and Kalkstein, L.S. 2008). The empirical evidence suggests that the 

oldest and youngest, least educated, economically disadvantaged, and racial/ethnic minority 

residents are particularly vulnerable to the effects of urban heat in U.S. metropolitan areas (Ellis 

1978; McGeehin and Mirabelli 2001; Basu and Ostro 2008). The concept of social vulnerability 

is established in natural hazards research (Cutter et al. 1997; 2009), and here refers to an 

increased sensitivity to hazards depending on demographic, socioeconomic, or housing 

characteristics of people in communities. Urban heat highlights the issue of social vulnerability 

to a hazard which is distributed inequitably across urban areas and populations. 

The distribution of vulnerability to hazards in different places is a central topic in the 

hazards research literature. Cutter (1996) proposed a hazards-of-place model of vulnerability 

which focuses on specific place-based interaction between biophysical vulnerability and social 

vulnerability. As shown in Figure 1, risk is directly impacted by efforts to mitigate it in this 

model. Both risk and mitigation establish the hazard potential which in turn has a geographic 

context and impacts the social fabric of communities. The geographic context impacts 

biophysical vulnerability; and the social fabric, social vulnerability. Both components 

(biophysical and social vulnerability) collectively affect overall place vulnerability which goes 

full circle to impact risk and mitigation. This is a highly dynamic model in which Cutter has 

operationalized a cascading series of relationships to examine issues like community resilience 

(Cutter et al. 2008). This dissertation concerns itself with the evaluation of hazards-of-place by 

examining the interplay of biophysical and social vulnerability in U.S. urban areas at the census 

tract level, which are used as a proxy for neighborhoods.  
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Figure 1. Cutter’s hazards-of-place model of vulnerability. Source: Author’s rendering after 

Cutter (1996). 

 A similar, but less complex, model of the relationship of risk (R) with hazards (H) and 

vulnerability (V) is offered by Wisner et al. (2004) in the equation R = H * V. For Wisner et al., 

people’s exposure to risk is evaluated by the impact of hazards. Wisner’s risk equation was 

operationalized by Collins et al. (2013) as a way of evaluating the level of risk children 

experience from biophysical vulnerability and social vulnerability to climate change.  The 

association of biophysical vulnerability and social vulnerability may also be an indicator of 

environmental inequities related to socioeconomic status, race, ethnicity, or age. Consequently, 

the relative vulnerability of different places defined through the hazards-of-place model is a 

useful concept when examining claims of environmental injustice regarding inequitable exposure 

to the biophysical factors of elevated temperature, sparse vegetation, and dense urban structure 

and their association with socially vulnerable groups of people in different urban areas.  
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Thermal Inequity 

Urban heat, and the combination of the UHI and increases in the temperature baseline, 

has not attracted the level of attention that other hazards impacted by global climate change have. 

Since it does not leave a path of material destruction like other weather related hazards, urban 

heat has been called the “silent killer” (Luber and McGeehin 2008). However, several high 

casualty events have generated media attention about the destructive capacity of heat waves on 

urban populations. The 1995 Chicago heat wave, 2003 European heat wave, and 2010 Moscow 

heat wave and associated fires were mass casualty events, drawing public attention to the health 

impacts of heat waves. Consequently, urban heat is seen primarily as a public health issue which 

can be managed through improved emergency preparedness like warning systems (Kalkstein 

1991) and cooling shelters (Semenza et al. 1996). Others call for UHI mitigation through 

alteration of the built environment, which includes structural measures like cool and green roofs, 

increased green space and permeable land cover (Harlan et al. 2006; Johnson et al. 2012). 

Because of its episodic occurrence, lack of material damage, and impact on socially vulnerable 

groups that often lack political power, urban heat was not framed as an environmental justice 

issue until recently. 

Although heat waves have been understood by most scholars concerned with urban 

climatology and public health as a natural hazard, urban heat should also be considered an issue 

of environmental equity, specifically, a climate justice concern. It is a hazard that combines 

elevated urban temperatures from the UHI with increasing numbers of days of extreme heat, 

signifying greater heat wave frequency and intensity, one of the many effects ascribed to global 

climate change (Meehl and Tebaldi 2004). The contribution of anthropogenic factors transforms 

the common understanding of heat waves as natural hazards that prevailed until the late 20th 
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century (Klinenberg 1999). Like hurricanes, tornadoes, and drought, heat waves were once 

considered an “act of God” or nature with little or no human causality. However, increasing 

urban heat differs from these other natural hazards because it arises from multiple anthropogenic 

causes. It is a consequence of higher urban density and changes to land cover combined with 

increasing global temperature baseline and climate variability due to greenhouse gas emissions. 

These factors combined with social issues make urban heat a hazard which is socio-technical in 

origin and could have substantial adverse impacts on populations living in developed nations 

located in mid-latitude regions. Additionally, vulnerability to this hazard is not distributed 

equitably across society. As mentioned earlier, some individuals are especially vulnerable to 

elevated urban heat both because they live in hotter areas and also because of neighborhood 

effects like inadequate social ties or economic resources (Browning et al. 2003; Harlan et al. 

2013). These individuals constitute socially vulnerable groups which may have limited abilities 

to cope with or mitigate the hazard.  

 Environmental justice advocates and scholars emphasize that disproportionate exposure 

to a hazard, coupled with an inability to mitigate its negative effects, is fundamentally unjust. 

Since environmental inequities are socially produced, environmental justice research seeks to 

uncover the structural dynamics which underpin inequality (Brulle and Pellow 2006). Extensive 

analysis of morbidity and mortality during heat waves indicate that there is considerable 

disparity in the distribution of risk among populations with several factors indicative of social 

vulnerability (Ellis 1978; Kalkstein and Davis 1989; O’Neill 2003; Semenza et al. 1996; 

Whitman et al. 1997). Who you are, and where you live are critical factors when assessing 

vulnerability to the threat of urban heat. With urban heat the central question is: are socially 

vulnerable groups consisting of young children, older adults, racial/ethnic minorities, and 
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individuals of lower socioeconomic status who live in the structurally densest and least vegetated 

parts of U.S. metropolitan areas disproportionately exposed to the adverse impacts of urban heat 

and heat waves? If this is the case, then many U.S. metropolitan areas may collectively represent 

a “landscape of thermal inequity,” which is both a physical and cultural landscape of differential 

exposure and social vulnerability to urban heat.  

 

Outline of this Dissertation 

The goal of this dissertation is to address several major gaps in the growing research 

literature on the adverse social impacts of urban heat and situate urban heat as an issue relevant 

to climate justice. Using a geographic approach in three case studies, this dissertation 

comprehensively and systematically examines urban heat and social vulnerability in a spatially 

diverse selection of localities including many of the largest U.S. cities, which are facing the risk 

of heat waves indicated by increased extreme heating days by 2050. Previous empirical studies 

of this topic have been confined to only one or two cities as study sites. For instance, Phoenix is 

often chosen as a study area due to its high summer temperatures and status as a population 

center. Limiting study areas allows depth of analysis, and also a historical consideration of urban 

development, but it makes it difficult to assess the differential impacts of place. How does the 

association between exposure to urban heat and social vulnerability differ from city to city? This 

dissertation takes a broad approach by studying multiple urban areas at the metropolitan level 

across the nation so that differences in associations of the variables can be compared. 

Additionally, several methodological limitations of the previous research are addressed through 

the consideration of spatial autocorrelation and use of an urban heat risk index (UHRI) which 



www.manaraa.com

8 
 

accounts for a larger set of factors than simply LST. Finally, this dissertation examines the 

association of racial and ethnic segregation and exposure to urban heat using a multilevel 

modelling method (MLM), also known as hierarchical linear modeling. In this way the relevance 

of segregation in establishing the urban ecology of different cities of the U.S. can be examined. 

These theoretical and methodological improvements should advance research in this field, 

establishing it as an issue of climate justice warranting academic study in the fields of urban 

geography, natural hazards, and environmental justice. 

The three articles comprising this dissertation explore urban heat and the exposure of 

socially vulnerable groups at the census tract level. The first paper in chapter 2 examines the 

association between land surface temperature (LST), commonly used as a measure the surface 

urban heat island (SUHI), and the location of socially vulnerable communities. The second, in 

chapter 3, extends the work by establishing a new index of urban heat to account for the 

relationship of built structural density, vegetation, and LST. This urban heat risk index (UHRI) is 

then used to investigate the association with social vulnerability in different neighborhoods. An 

expanded set of explanatory variables is used in three different cities with varying urban 

ecologies. Finally, in chapter 4 the association of urban heat with socioeconomic status and the 

interaction of segregation with minority residential patterns are investigated in different urban 

areas throughout the U.S. The three articles can be understood in the theoretical context of place 

vulnerability (Cutter 1996). The dependent variable of LST or the UHRI is indicative of 

biophysical vulnerability, while the explanatory variables are indicators of social vulnerability in 

that theoretical context.  

Each paper expands on the spatial scale of the study areas, increasing the scope of 

analysis of this dissertation. The first paper is a small scale-study set in the geographically 
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bounded peninsula of Pinellas County, Florida in the southeastern region of the U.S. Pinellas 

County is the most densely populated county in Florida and has been fully residentially 

developed, having reached a “built-out” status (Mitchell and Chakraborty 2014). Here, the urban 

processes of sprawling suburbanization in the post-war period were followed by recent 

gentrification and demographic inversion resulting in a changing urban ecology. The second 

paper encompasses larger geographic scale than the first, examining the three most populous 

urban areas of the U.S.: Chicago, Los Angeles, and New York City (Mitchell and Chakraborty 

2015). The differing urban ecologies of these cities allow for an analysis of the varying spatial 

distributions of minority and lower-income neighborhoods. While the methodology of the first 

two articles implement spatial autoregressive models (SAR), the third utilizes multi-level 

modeling (MLM). The application of MLM allows an examination of the associations between 

urban heat, minority, and low socioeconomic status neighborhoods, and then segregation in 

twenty of the largest urban areas distributed throughout the U.S. defined by their MSA 

boundaries. Overall, the approach of these three studies is to move to increasing scales and 

complexity of urban form.  

The principal aim of these articles is to frame the environmental equity concerns related 

to urban heat as an issue of climate justice. They extend the analysis of how urban heat is 

inequitably distributed in U.S. cities. Urban heat arises from the built structure of cities – the 

reconfiguration of the natural landscape and its replacement by built structures with different 

thermal characteristics and capacities. The UHI effect is augmented by an elevated temperature 

baseline and an increase in heating days caused by global climate change. The UHI creates a 

differentiated heat structure in cities, resulting in urban heat patterns which do not uniformly 

impact areas where people live and work. The studies hypothesize that the physical and social 
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landscape of U.S. cities are places of unequal exposure and unequal vulnerability for residents. 

This thermal landscape is constructed by social and technological processes which shape U.S. 

cities. These processes form the context of varying exposure. While extreme heat events, or heat 

waves, have broad spatial coverage effecting MSAs, their exurbs, and often larger regions, their 

intensity is spatially variable due to the impact of micro-urban heat islands, which effect 

neighborhoods differentially (Aniello et al. 1995).  

This doctoral dissertation draws from the fields of urban climatology, natural hazards 

research, and urban geography for an interdisciplinary examination of urban heat with the goal of 

establishing urban heat and thermal inequity as an environmental justice issue. First, it 

contributes to the evolving climate justice literature by presenting a methodology based on UHI 

studies for determining census tract level patterns of urban heat vulnerability. Second, it makes a 

theoretical contribution by defining thermal inequity as an issue arising out of the social and 

technological processes of urban formation. Third, it examines the association of a major social 

problem, segregation, and its relationship with inequitable exposure to urban heat. The final 

chapter outlines both the conclusions of this research and its effort to link urban heat to social 

factors like socioeconomic inequality and segregation, and the limitations established by the 

focus on urban areas of a developed nation like the U.S.         
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CHAPTER TWO:  

URBAN HEAT AND CLIMATE JUSTICE: A LANDSCAPE OF THERMAL INEQUITY 

IN PINELLAS COUNTY, FLORIDA
1
 

Introduction 

The combined effects of two global trends, urbanization and climate change, have 

generated considerable concern regarding their adverse and disproportionate impacts on the 

health of urban populations (Grimmond 2007; Luber and McGeehin 2008; McCarthy et al. 

2010). Urbanization increases population density and leads to the spatial expansion of cities, 

replacing vegetation with built structures of generally lower albedo, greater impervious surface 

area, and higher thermal mass (Golden 2004). This pattern of urban development alters the 

thermal exchange between the land surface and lower atmosphere at a local scale, resulting in 

higher urban heat levels, a phenomenon referred to as the urban heat island (UHI) effect. In 

addition to the UHI, global climate change (GCC) is predicted to continue to raise the global 

temperature baseline and cause greater climate variability (IPCC 2007), increasing the intensity 

and duration of heat waves (Gaffen and Ross 1998; Meehl and Tebaldi 2004). The predicted 

increase in heat waves has prompted public health concern regarding rising levels of heat-related 

illness and mortality, especially in densely populated urban areas where heat is amplified by the 

UHI (Kalkstein and Greene 1997; McGeehin and Mirabelli 2001; Sheridan, Kalkstein, A.J., and 

                                                           
1
 Portions of this chapter have been previously published in Geographical Review, 2014, 104(4), 459-480, and have 

been reproduced with permission under Creative Commons licensing. 
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Kalkstein, L.S. 2008). The analysis of elevated levels of urban heat is an emerging research area 

in which human-environmental interactions occurring at a global scale such as GCC are linked 

with regional scale hazards and disasters such as extreme weather events and heat waves.  

Mortality rates during heat waves have been studied at least since the 1930s, but attracted 

increased attention after several high mortality events in the U.S. (1980, 1988, 1995, and 1999) 

and Europe (2003, 2010) that disproportionately impacted socially vulnerable groups. Social 

vulnerability is a well-established concept within natural hazards research, which emphasizes 

demographic, socioeconomic, and housing characteristics that make people more susceptible to 

the adverse impacts of hazards. In the context of this study, social vulnerability refers to the 

increased sensitivity to heat waves by specific subgroups such as racial/ethnic minorities and 

low-income residents in urban areas. Socioeconomic status is an important determinant in the 

ability to access or afford to operate amenities such as air-conditioning (Basu and Samet 2002), 

or increased landscaping which moderates temperature extremes (Jenerette et al. 2011). Studies 

of past heat waves suggest that populations with diminished adaptive capacity to heat are 

particularly affected, including older people (Ellis 1978; Whitman et al. 1997), African-

Americans (Kalkstein and Davis 1989; Whitman et al. 1997; O’Neill 2003; CDC 2012), 

individuals living alone (Klinenberg 2002), and people lacking the economic resources to 

mitigate and adapt to elevated urban heat (Semenza et al. 1996). The disproportionate health 

effects on socially vulnerable populations raise the question whether elevated urban heat is an 

environmental injustice concern. 

Environmental justice scholarship in the U.S. has traditionally focused on the inequitable 

distribution of disamenities such as air pollution, hazardous waste, and undesirable land uses, 

with respect to racial/ethnic minorities and economically disadvantaged groups. Environmental 
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justice advocates and scholars have emphasized the role of race, ethnicity, and socioeconomic 

status as powerful determinants of the spatial layout of urban areas, influencing the siting of 

industry, commercial development, transportation, and housing (Bullard 2000; Pulido 2000). 

Recent studies have extended the traditional environmental justice framework by examining 

social inequities in the distribution of environmental amenities such as parks (Heynen et al. 

2006; Boone et al. 2009), playgrounds (Talen and Anselin 1998), and street trees (Landry and 

Chakraborty 2009) that provide direct and indirect health benefits to local residents. Climate 

justice is an emerging subfield of environmental justice, concerned with the inequitable 

distribution of the impacts of GCC. While climate justice recognizes that the spatial scale of 

GCC impacts range widely it has tended to operationalize these concerns at an international level 

(Walker 2012). The adverse and disproportionate impacts of urban heat on socially vulnerable 

groups represent a hazard that integrates the effects of GCC with the UHI, thus combining the 

global with the local. Since social inequities associated with these impacts stem from the varying 

spatial distribution of heat across different communities in urban areas, they require an 

examination of the urban built structure with its varying thermal capacity. The two factors of 

physical infrastructure and the spatial clustering of population subgroups are entwined in the 

disproportionate distribution of heat across urban areas creating a landscape of thermal inequity 

within our cities. 

Recent empirical studies have examined social disparities in exposure to elevated levels 

of urban heat in several metropolitan areas such as Chicago, Phoenix, and Philadelphia (Harlan 

et al. 2006; Uejio et al. 2011; Chow et al. 2012). Although these studies have made important 

strides in identifying specific inequities with respect to urban heat, certain limitations have not 

been consistently addressed. Specifically, previous research has not comprehensively assessed 
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the spatial pattern of urban heat within study areas, nor has it consistently used geostatistical 

techniques to account for spatial dependence in the data. Our article seeks to address these 

methodological limitations of previous work and extend climate justice research through a case 

study that examines social and spatial inequities in the distribution of urban heat in Pinellas 

County, Florida. Our study uses high-spatial-resolution and remotely sensed thermal data to 

systematically analyze the geographic distribution of land surface temperature (LST), a key 

parameter used in urban climate studies (Voogt and Oke 2003), with respect to socially 

vulnerable populations. The analysis also incorporates cutting-edge geostatistical techniques that 

account for spatial autocorrelation. These research enhancements should enable improved 

identification of the hazard’s spatial pattern with respect to neighborhoods with greater social 

vulnerability. Identifying areas of greater thermal potential and their overlap with vulnerable 

communities is critical to mitigation efforts for this growing problem, allowing more efficient 

and equitable allocation of resources when restructuring the urban environment. This capability 

of resolving temperature at the neighborhood scale combined with geostatistical analysis of 

socio-demographic variables can be used to establish the presence of a landscape of thermal 

inequity in urban areas, and determine its geographic variation and extent. 

 

Urban Heat and Thermal Inequity 

A review of the literature pertaining to heat waves and urban heat indicates a growing 

emphasis on social disparities in the spatial distribution of this hazard. While studies of heat 

waves and mortality have a long history, links between urban land use, the UHI, and mortality 

came later in the work of Buechley et al. (1972) and Clark (1972). Exposure to excessive heat, 

regardless of the causal factor, is considered to be, on average, the greatest cause of weather-
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related fatalities in the U.S. (CDC 2012). High mortality rates from heat waves during the 

summer of 1980, and especially as a result of a 1995 Chicago, Illinois heat wave, increased 

public health awareness of the issue. The shocking death toll in Chicago, which by official count 

resulted in 536 deaths (ILDPH 1997), compelled public officials to recognize social disparities in 

the impact of urban heat on vulnerable groups.  In his book titled Heat Wave: A Social Autopsy 

of Disaster in Chicago, Klinenberg (2002) argued that socially vulnerable groups including 

African-Americans, people living on annual incomes below the poverty level, older people living 

alone, and people with medical conditions were particularly exposed to the risk of urban heat. 

The inability to recognize this vulnerability represented a massive public policy failure, in which 

the most helpless members of society were invisible to the municipal emergency planning 

structure of the time. 

Since 1995, greater attention has been devoted to the topic of urban heat and social 

disparities in its adverse health effects. Several studies have taken a quantitative approach to 

examine the spatial pattern of urban heat and its differential impact on communities in various 

metropolitan areas. A study by Harlan et al. (2006) was the first to emphasize disproportionate 

exposure to urban heat as an environmental justice issue. Comparing the patterns of urban heat in 

the city of Phoenix and the socio-demographic composition of the city, this research found 

significant associations between increased temperature and neighborhoods with weaker social 

networks, lower median income, and higher proportions of Hispanic residents. The study also 

noted that structural and historical forces had left “poor and minority populations” in 

“deteriorated urban spaces” which were not amenable to environmental improvement (Harlan et 

al. 2006). A subsequent study by Jenerette and Harlan et al. (2011) suggested that lack of 

environmental amenities and cooling vegetation in warmer urban areas of Phoenix amounted to a 
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“heat riskscape” with varying risk exposure and human vulnerability in the urban environment. 

Chow et al. (2012) extended Harlan et al’s. methodological approach in their Phoenix study, 

calculating summer maximum and minimum temperatures and an index of vegetation abundance 

for two periods: 1990 and 2000. Their findings supported the previous evidence that higher 

temperatures and lower amounts of vegetation were associated with higher numbers of Hispanic 

and elderly residents, as well as lower socioeconomic status. Chow et al. concluded that 

economically affluent Phoenicians were better able to manipulate their environment through 

lower structural density, increased landscaping, and the use of air conditioning (2012). Each of 

these studies have moved toward a more comprehensive framing of urban heat and the factors 

associated with social vulnerability as environmental justice concerns. 

  The studies conducted in the city of Phoenix have relied on the development of an 

extensive atmospheric temperature data collection system. While atmospheric temperature is the 

most direct way of assessing exposure to elevated heat, there are other environmental factors that 

indicate areas of elevated temperature due to the UHI, including the amount and density of 

vegetation and built structures, the sky view factor of areas, and the geometry of the urban 

environment (Voogt and Oke 2003). Areas of elevated LST are also an indicator of the spatial 

boundaries of the surface urban heat island (SUHI) .Other studies have used land surface 

temperature to assess areas of elevated urban heat. Uejio et al. (2011) analyzed the health 

impacts of urban heat in both Phoenix and Philadelphia by utilizing LST and impervious surface 

data in conjunction with a generalized linear mixed model approach to correct for temporal 

autocorrelation in the data. Additionally, recent studies in the U.S.-Mexico border cities of El 

Paso, TX and Juárez, Mexico have examined LST as a factor of neighborhood hazard evaluation 

for climate change (Grineski et al. 2012; Collins et al. 2013). Using Landsat imagery and spatial 
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regression modeling to correct for spatial autocorrelation, Grineski et al. and Collins et al.  

applied a social vulnerability index to assess areas of elevated urban heat exposure and climate 

change risk. 

Several studies in the city of Philadelphia have noted significant and positive correlations 

between elevated LST and higher rates of heat related mortality or health risk in urban areas 

(Johnson et al. 2009; Johnson and Wilson 2009; Hondula et al. 2012), establishing a precedent 

for the use of this indicator for measuring urban heat exposure. By directly examining 

biophysical factors of the SUHI and UHI such as LST and its statistical relationship with socially 

vulnerable population groups, it may be possible to discern whether a landscape of thermal 

inequity exists in urban areas. 

 

Study Area 

As shown in Figure 2, Pinellas County is located on the west-central coast of Florida and 

is part of the Tampa–St. Petersburg–Clearwater Metropolitan Statistical Area (MSA), commonly 

referred to as the Tampa Bay MSA. This county has a humid subtropical climate, typified by hot, 

wet summers and cool, drier winters. Its peninsular geography, bounded by the Gulf of Mexico 

to the west and Tampa Bay to the east, has constricted growth and development, and it is now 

considered “built-out” with the last commercially available green space having been developed 

in the last decade. Pinellas is the most densely populated county in Florida, with 1,264 persons 

per square km and a total population of 916,542 (U.S. Census 2010). About 76 percent of its land 

area is urbanized, while the remainder consists mostly of publicly held parks and preserves. 

 In addition to its relatively high level of urban density in a state characterized by 

suburban sprawl, Pinellas County has several distinctive socio-demographic characteristics that 
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make it suitable for environmental justice research, in general, and climate justice, in particular. 

It is highly segregated residentially for White and African-American residents, relative to 

surrounding counties. The White/African-American dissimilarity index for Pinellas is 0.625, 

compared to 0.437 for neighboring Hillsborough County (USDHHS 2010). Historically, Pinellas 

County developed as a winter resort and haven for retirees. In 2010, residents aged 65 and older 

comprised 21 percent of the population compared to 17 percent statewide (U.S. Census 2010). 

The poverty rate was slightly below the state average of 13.8 percent, at 12.1 percent (U.S. 

Census, ACS 2010). In addition, Pinellas County has the second largest community of Southeast 

Asian residents in the state of Florida (U.S. Census 2010). Vietnamese and “Other Asians” 

including Cambodian, Hmong, and Laotian people comprise almost 45% of the Asian population 

of the county, and are concentrated in the cities of East and West Lealman and Pinellas Park in 

the south-central portion of the peninsula. In the 2000 U.S. Census, educational attainment levels 

were lower and poverty rates higher among the Vietnamese, Cambodian, Hmong, and Laotian 

groups. Pinellas County’s history of rapid growth and development from 1960 to 2000, its recent 

built-out status, its population loss between 2000 and 2010, and a diversifying population make 

its demographic patterns similar to those of many mature cities of the Sunbelt region (Hollander 

2011). Both the large older population and diversity of minority groups in Pinellas were key 

factors in choosing it as a study area.  
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Figure 2.  Pinellas County, Florida. 
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Pinellas County’s pattern of development has been centered on a few small urban cores 

consisting mainly of low-rise buildings. These urban areas are linked by a grid-like pattern of 

commercial thoroughfares and surrounded by sprawling residential suburbs. Because of its 

peninsular shape, the urban core areas are generally near the waterfront, creating high density 

areas near the coast, sometimes buffered from the water by narrow strips of beach or parkland. 

Waterfront areas are considered an amenity and are preferred sites of residence for the region’s 

economically affluent residents, as demonstrated by higher median household income and 

median housing values in cooler coastal census tracts. Commercial districts stretch inland, 

toward the center of the peninsula, where less affluent residential areas are located. This creates a 

general spatial pattern with residences of higher income population groups located in the cooler 

waterfront areas, while commercial sites and housing for lower income residents tend to be 

located toward the interior of the peninsula where the UHI effect is most pronounced. This is a 

historical pattern of settlement that can be traced back to the early 1900s in the two principal 

cities of Clearwater and St. Petersburg. Desirable waterfront locations of urban areas were sites 

of income-producing tourist housing and were also purchased by affluent residents. Areas inland 

became sites of commercial or light industrial activity and housed the economically 

disadvantaged residents, among them the African-American community who served as domestic 

servants and laborers for the burgeoning tourist trade and construction industry. This established 

a spatial pattern of settlement that largely holds true to the present. 

  It is difficult to accurately gauge the adverse health effects of urban heat on the 

population of Pinellas County. The climate is humid subtropical and air-conditioning use is 

widespread, two factors that may indicate greater acclimatization and adaptation to heat by the 

population (Medina-Ramón and Schwartz 2007; Zanobetti and Schwartz 2008). Although 
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Florida is ranked seventh of U.S. states in the overall number of fatalities from excessive heat 

with 170 deaths from 1999 to 2009 (CDC 2012), the numbers are questionable due to different 

practices used by physicians and medical examiners in diagnosing heat as a primary or 

contributing factor in cause of death (Dixon et al. 2005). In terms of hospitalization and illness, 

the Florida Department of Health reports that between 2005 and 2009, there were 16,523 hospital 

admissions in the state (rate of 18.3/100,000) for heat related illness (HRI) for residents age 16 or 

older, and an additional 2,198 admissions for occupational HRI (FL Dept. of Health 2011). 

Pinellas County ranks lower in terms of occupational HRI admissons than counties located in 

rural parts of the state where agriculture is still a major economic activity. Despite its lower 

occupational risks for heat related illness or injury, Pinellas is a densly populated county with a 

large number of of elderly residents in a state that is ranked high nationally for heat related 

fatalities. 

 

Data and Methods 

This study uses remote sensing techniques, U.S. Census and American Community 

Survey (ACS) data, and both conventional and spatial regression analysis to evaluate socio-

demographic inequities in the geographic distribution of urban heat in Pinellas County, Florida. 

A workflow summary of methods is presented in Figure 3. The following sections provide a 

detailed description of specific data sources and methods utilized for this analysis. 

 

Dependent Variable: LST 

Land surface temperature (LST) was chosen as the dependent variable in this study 

because of its status as a key parameter in urban climate studies, and its positive statistical 
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association with rates of heat-related morbidity and mortality (Johnson and Wilson 2009; 

Johnson et al. 2009; Hondula et al. 2012), and utilization in environmental justice studies which 

have considered disparities in the exposure to environmental hazards, including urban heat 

(Grineski et al. 2012). LST from two types of remote sensing data were first examined in order 

to determine whether a UHI pattern was present in the study area. MODIS and LANDSAT 

satellite imagery provided indications of the UHI pattern at different spatial and temporal scales. 

One kilometer spatial resolution MODIS satellite imagery was acquired to assess whether a 

diurnal surface urban heat island pattern existed in the study area (NASA LP DAAC). Several 

MODIS 8-day LST composite images were processed and examined, but due to seasonal weather 

patterns few cloud-free images were available during the summer months. An image from the 

period of September 14-21, 2010, which had high average temperatures and the fewest missing 

pixels was selected. Figure 4 depicts a pronounced diurnal thermal cycle in this study area. The 

afternoon image, in particular, shows differences between lower coastal and higher inland 

temperatures, with the greatest contrast in the south-central portions of the Pinellas peninsula. 

This pattern reverses at night as land with its lower thermal inertia cools more rapidly than 

wetlands and water, causing the coastal areas to have higher relative temperatures by 1:30 AM 

(Price 1977).  

Although the MODIS imagery allows clear visualization of the diurnal UHI pattern 

throughout the area, its coarse spatial resolution is poorly suited for finer scale analysis of urban 

heat. Higher spatial resolution (120 meter) LANDSAT 5 Thematic Mapper (TM) satellite 

imagery was selected to analyze the dependent variable, LST. This level of spatial resolution 

allows clear determination of neighborhood differences in LST. An image acquired on 16 July 
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2010 at 11:53 EDT, a day of high daily average atmospheric temperature (31.7° C) with no 

precipitation and minimal cloud cover was selected. 

Several steps were involved in processing the LST image. The USGS Earthexplorer 

portal was used to export the tagged image file format (TIFF) image, which had been processed 

to level 1 standard including radiometric correction and georectification. LANDSAT 5 TM 

captures spectral data in seven bands, and three of these were used to process an image: bands 3 

(red) and 4 (near-infrared), and the thermal band, 6. Moderate spatial resolution images like 

those from LANDSAT 5 TM are suitable for general urban studies and have been used to 

identify neighborhood level effects, like micro-urban heat islands (Aniello et al. 1995). LST was 

calculated using the mono-window algorithm as described by Qin et al. (2001) and Pu et al. 

(2006). Processing involved deriving two images: the thermal image and an emissivity image. 

The surface emissivity image was produced using bands 3 and 4 to calculate the Normalized 

Difference Vegetation Index (NDVI) value for each pixel. Using the NDVI, the pixels were then 

categorized by predominant land cover into water, vegetated, and impervious types. Atmospheric 

data from the time, including near surface temperature and precipitable water acquired at the 

National Weather Service station in Ruskin, Florida, were used for MODTRAN 4 atmospheric 

correction. The emissivity and atmospheric data are then used with the LANDSAT TM thermal 

data to produce an LST image of the area. Several pixels in the northern part of the peninsula 

were obscured by clouds and therefore excluded from mean temperature calculations. Their 

exclusion created minimal differences in temperature (2.32 percent) from the same areas of the 

July 2011 image. Calibration of the LST image was achieved by using in-situ surface water 

temperature measurements from National Ocean Service, Clearwater Beach station (CWBF1) 

(NOAA 2010). After that, water pixels were eliminated from aggregated census tract LST value.  
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Figure 3. Workflow of statistical methods used in this study. 
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The LANDSAT TM processed image displayed thermal patterns which were generally 

consistent with the MODIS image of higher daytime temperatures in the south and central 

regions of the peninsula. Figure 4 shows the distribution of LST in this region. Higher 

temperature urban core areas and transportation corridors are clearly evident on this map. The 

generally cooler temperatures of parks and preserved areas close to lakes, Tampa Bay, and the 

Gulf of Mexico are also discernible. 

 

 
 

Figure 4. MODIS Aqua and Terra satellite 8-day composite land surface temperature (LST) 

image of Tampa Bay area with 1km spatial resolution for September 14-21, 2010. 

 



www.manaraa.com

26 
 

        
Figure 5.  Land surface temperature (LST) remotely sensed by LANDSAT 5 TM sensor 

satellite, Pinellas County, 16 July, 2010. 
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Figure 6. Mean land surface temperature (LST) by census tracts, Pinellas County, 16 

July, 2010. 
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The mean LST for all pixels within each census tract was calculated based on Census 

2010 tract boundaries and used to represent the dependent variable for the statistical analysis. 

The spatial distribution of mean LST values at the census tract level is depicted in Figure 6.  

The map shows a similar geographic pattern of LST to those in Figures 4 and 5: generally 

warmer late morning afternoon temperatures for the inland areas and for the densest coastal 

tracts, with other coastal and wetland areas being cooler. 

 

Independent Variables 

Inequities in the distribution of LST were analyzed using a set of demographic and 

socioeconomic variables from U.S. Census 2010 and 2006-2010 ACS five-year estimates for 

Pinellas County, Florida, at the census tract level. Our selection of variables was guided, in part, 

by previous studies of urban heat mortality (Kalkstein and Davis 1989; McGeehin and Mirabelli 

2001; O’Neill  2003; Harlan et al. 2006; Basu et al. 2008). In this literature, individuals of lower 

socioeconomic status, the very young or old, and racial/ethnic minorities have been identified as 

being particularly vulnerable to the health effects of urban heating. Consequently, the percentage 

of families at or below the federal poverty level (income in past 12 months below poverty level) 

and the percentage of all housing that is owner-occupied (home ownership), based on the 2006-

2010 ACS estimates, were chosen to evaluate socioeconomic status. Although the U.S. Census 

provides no reliable measures of family wealth at the tract level, home ownership has been used 

as a general indicator of wealth and assets in previous environmental justice research (Cutter 

2009; Chakraborty 2011). Demographic variables were obtained from the 2010 U.S. Census, 

Summary File 1. We included both the percentage of population aged 5 years and under, as well 

as those aged 65 or more years. For race and ethnicity, we focused on the three largest minority 
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groups in this county: the percentage of the tract population identifying themselves as non-

Hispanic Black, Hispanic or Latino of any race, and Asian. Additionally, population density was 

considered as a control variable, and calculated as the number of people per square kilometer of 

the land area of census tracts. Finally, all variables were standardized before inclusion in the 

correlation and regression analysis. 

 

Statistical Methods 

To explore basic statistical associations between the dependent variable (mean LST) and 

each of the independent variables, we began by conducting parametric and non-parametric tests 

for bivariate correlation, based on Pearson’s correlation coefficient, respectively. We then used 

multivariate regression analysis to evaluate the relationship between urban heat and all 

independent variables in a single model, based on a three-step process. First, we constructed a 

multiple regression model based on the ordinary least squares (OLS) method, using LST as the 

dependent variable. This method is typical of conventional statistics and assumes that 

observations and regression errors are independent. This assumption, however, is unlikely to be 

valid if there is clustering of similar values in space or spatial autocorrelation in the data. Spatial 

autocorrelation is typically caused when observations at proximate locations are more similar or 

different than would be expected of a random distribution (Kissling and Carl 2008; Chakraborty 

2011). This phenomenon has the potential to cause spatial dependence of regression model 

residuals, thus violating the classical OLS assumption of independence. The second research step 

thus consisted of determining whether spatial dependence in the data influenced the OLS 

regression model results. We used the global univariate Moran’s I-statistic to examine the 

presence of residual spatial autocorrelation (Anselin and Bera 1998).  
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In order to test for autocorrelation, it is necessary to specify for each spatial unit which 

other units are “neighbors” and may influence its values (Cliff and Ord 1981). There are two 

approaches for defining the neighbors of a spatial unit: contiguity-based or distance-based. For 

the contiguity-based approach, we utilized first-order “queen-based” contiguity. All adjacent 

census tracts, including those sharing vertices with the tract of interest were included as 

neighbors. In contrast, the distance-based method relies on Euclidean distance between tract 

centroids for the selection of neighbors. The distance for selecting spatial neighbors was 

determined through an iterative process, involving calculation of weights matrices for a series of 

distances between centroids, ranging from 1,000 to 4,500 meters. The Moran’s I-statistic 

associated with regression model residuals for the various distances was assessed and the 

distance at which this value ceased to be statistically significant (2,400 meters) at the p<.10 level  

was chosen as the reference value.  

Finally, when we detected spatial dependence in the residuals of the OLS model, 

appropriate spatial regression models were specified to extend the standard regression equation 

and account for residual spatial autocorrelation. Simultaneous autoregressive (SAR) models are 

statistical models that consider spatial autocorrelation as an additional variable in the regression 

and estimate its effect simultaneously with the effects of other independent variables 

(Chakraborty 2011). This additional term (λ) is implemented with a (distance-based or 

contiguity-based) spatial weights matrix which accounts for patterns in the dependent variable 

that are not predicted by independent variables, but are instead related to values of proximate 

observations. We used the Lagrange Multiplier (LM) and the Robust LM diagnostic tests to 

determine whether the spatial lag or spatial error model specification should be used (Anselin 

2005). Spatial lag models assume that spatial autocorrelation is present in the dependent variable; 
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spatial error models assume that regression errors exhibit spatial dependence. For our case study, 

the LM tests indicated that the spatial error specification was appropriate for both contiguity-

based and distance-based models. 

 

Results 

A pattern of generally warmer LST inland, with cooler areas along the water is evident in 

both Figures 3 and 4. This pattern, visually detected, represents LST levels throughout the 

county on the observation date; indicative of clear-sky, summer daytime temperatures. Table 1 

provides summary statistics for the entire set of variables, with data for the dependent variable 

calculated from the tract level values represented in Figure 6. Average LST varies considerably 

across census tracts within the study area, ranging from 29.55° to 41.94° C, with a mean of 

36.92° C. Independent variables such as percent below poverty level, percent owner-occupied, 

percent age 5 and younger, and percent age 65 and older show substantial range across tracts. 

This is especially true for the percentage of non-Hispanic Black residents, which ranges from 

only 0.3 to 95.7 percent, corroborating the high dissimilarity index between this racial group and 

the White population this suggests a high level of residential segregation. Tract level values of 

percent below poverty range from 0.70 to 58.0 percent, indicating wide economic disparity. 

Rates of home ownership also vary greatly, from 11 to almost 96 percent.  
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Table 1.  Descriptive statistics for mean land surface temperature (LST) and explanatory 

variables. 

Variable Minimum Maximum Mean Std. Dev. 

Mean LST (°C)    29.55       41.94  36.92         2.15  

Population per sq. km  944.00   8,922.00 3,697.30 1,432.01 

% African-American      0.30        95.70       10.34      18.71 

% Hispanic      1.40        32.30         7.48        4.69 

% Asian      0.00         17.50         2.84        2.55  

% Age: ≤ 5 years     0.30         12.60          4.48        1.89  

% Age: ≥ 65 years     2.10        74.20        22.31      12.69 

% Below Poverty      0.70         58.00        12.11        8.67  

% Owner-Occupied    11.40         95.60        67.44       17.05  

N = 244 census tracts.                                                                                                  

 

Bivariate Correlation Analysis 

Our analysis begins with an examination of bivariate parametric and non-parametric 

correlations to analyze the strength and direction of the statistical relationship between mean 

LST and each independent variable at the census tract level. Pearson’s (r-values) correlation 

coefficients for each variable are presented in Table 2. 

Table 2. Bivariate correlation of mean land surface temperature (LST) with explanatory 

variables. 

Variable Pearson’s r  

Population per sq. km .414***  

% African-American .133***  

% Hispanic .159***  

% Asian .083**  

% Age: ≤ 5 years .148***  

% Age: ≥ 65 years -.002  

% Below Poverty .322***  

% Owner-Occupied -.288***  

N = 244 census tracts; *p < 0.10; **p < 0.05, ***p < 0.01 

 

The Pearson’s correlation coefficient indicates statistically significant and positive linear 

associations between LST and population density, the percent below poverty level, percent age 5 
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or younger, as well as the non-Hispanic Black, Hispanic, and Asian percentages, with population 

density showing the strongest positive correlation. The percentage of owner-occupied homes is 

the only variable that shows a significantly negative linear correlation with LST. These results 

suggest that areas of higher LST in this county are associated with significantly higher 

population density, poverty rates, and racial/ethnic minority proportions, as well as lower levels 

of home ownership.  

 

Conventional Regression Analysis: Ordinary Least Squares Model 

The next step of the analysis uses a traditional ordinary least squares (OLS) regression 

model to investigate the simultaneous effects of the eight independent variables on mean LST in 

Pinellas County. The regression results are summarized in Table 3.     

Table 3. Ordinary Least Squares (OLS) and Spatial Error Regression of mean land surface 

temperature (LST).  

 

 

Variable  

 

 

OLS 

Spatial Error:  

Contiguity-Based 

(1
st
 order queen) 

Spatial Error: 

Distance-Based 

(2400m) 

Constant     0.000       0.007     - 0.194 

Population per sq. km 
 

     0.334***       0.255***      0.283*** 

% African-American      -0.049       -0.027      0.010  

% Hispanic        0.033        0.016       0.052  

% Asian       0.126*        0.193***       0.183**  

% Age ≤ 5 years      -0.012      -0.081      -0.100  

% Age ≥ 65 years       0.086        0.094      0.096  

% Below Poverty       0.227***       0.175**       0.132*  

% Owner-Occupied      -0.126*      -0.199***      -0.271***  

Spatial error parameter (λ)      N/A       0.540***       0.621***  

F - Statistic     10.054***       N/A      N/A 

Moran’s I (queen)        0.362***      -0.018      N/A 

Moran’s I (2400 meters)       0.317***       N/A      0.008 

Adjusted/Pseudo R-squared                       0.229       0.473      0.467 

Akaike Information Criterion 

(AIC) 

  637.615   575.689  580.799 

N = 244 census tracts;*p < 0.10; **p < 0.05; ***p < 0.01.     
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The ANOVA F-test indicates overall significance (p < 0.01) and the adjusted R-squared 

(0.229) suggesting a reasonable goodness-of-fit for this multiple regression model. The 

multicollinearity condition index is 4.775, confirming low levels of multicollinearity among the 

standardized independent variables. Variable coefficients for both non-Hispanic Black and 

Hispanic percentages do not remain significant (p>.10) after controlling for age and 

socioeconomic status in a multivariate model. However, population density, percent Asian, and 

percent below poverty level are significantly positive, while percent owner-occupied is 

significantly negative. The next step was to determine if the regression residuals (errors) from 

this OLS model satisfy the classical linear regression assumption of independence, or if they 

exhibit significant spatial autocorrelation. The residual Moran’s I statistic associated with the 

contiguity-based and distance-based approaches for selecting spatial neighbors were 0.362 and 

0.367, respectively. Both these positive values are statistically significant (p<.01), confirming 

that the residuals are spatially dependent with respect to their values in neighboring tracts. Since 

this is a serious violation of the assumption of independence, the OLS regression model is 

inadequate for analyzing the association between the dependent and independent variables. 

 

Spatial Regression Analysis: Spatial Error Model 

Spatial autoregressive (SAR) modeling was employed to account for the significant and 

positive spatial autocorrelation indicated by the OLS regression residuals. Results of SAR 

analysis, using a spatial error model specification, indicate several improvements from the OLS 

model (Table 3). For both SAR models (contiguity-based and distance-based), the Moran’s I-

statistic is near zero and statistically non-significant (p<.10), while the spatial error term (λ) is 
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highly significant (p<.001). This implies that the effects of spatial autocorrelation have been 

mostly eliminated from this regression model using either the contiguity or distance-based 

methods. Additionally, the pseudo R-squared (0.473 and 0.467) shows an improvement in 

goodness-of-fit compared to the OLS model. Finally, the Akaike Information Criterion (AIC) 

scores from the spatial error models are also lower than the AIC from the OLS model, indicating 

considerable improvement in model performance.  

Differences between the two methods of neighbor selection for the SAR models, 

contiguity (queen) and distance (2,400 meters) are evaluated by comparing the relative value of 

the Moran’s I-statistic. While both measures are non-significant (p> .10), the distance-based 

weights matrix of the SAR model yields only a slightly lower Moran’s I (0.008 versus -0.018). 

Consequently, both SAR models yield Moran’s I values close to zero, and reduce spatial 

autocorrelation when compared to the OLS model. 

Results of both SAR models indicate that several independent variables are significantly 

and positively associated with LST (p<.10). Census tracts with higher average LST are 

characterized by significantly greater population density and poverty rates, as well as a higher 

percentage of Asian residents. Coefficients for non-Hispanic Black and Hispanic percentages in 

the spatial error model are positive, but non-significant in presence of the other variables. Rates 

of home ownership show a negative association with mean LST, and this relationship was also 

statistically significant (p < .01) in the SAR models. The results of the SAR distance model are 

consistent with the OLS model in which population density, percent Asian, percent below 

poverty, and percent home owner-occupied were all significantly related to LST. 
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Concluding Discussion 

Climate justice has focused primarily on the inequitable distribution of the adverse 

impacts of climate change on economically, politically, and socially marginalized communities 

around the world. In the case of urban heat, the effects of the UHI are compounded by climate 

change. Socially vulnerable groups in cities are inequitably exposed to a hazard which amplified 

by human induced climate change and the built structure of urban environments. As this 

important subfield of environmental justice research continues to develop, a rigorous empirical 

methodology is required to examine the interconnection between the built urban environment, 

urban heat, and socio-demographic characteristics of urban residents. 

From an empirical perspective, our case study reveals significant statistical relationships 

between where particularly vulnerable groups live and their level of exposure to elevated urban 

heat. Specifically, the findings clearly indicate that urban heat is distributed inequitably with 

respect to race, ethnicity, and socioeconomic status in the study area of Pinellas County, Florida. 

The results of bivariate correlation analysis revealed that mean LST to be significantly greater in 

neighborhoods with higher population density, higher proportions of non-Hispanic Black, 

Hispanic, Asian (especially Southeast Asian), and elderly residents, as well as those with higher 

poverty and lower home ownership rates. Multiple regression analysis confirmed that LST is 

significantly greater within census tracts that contain higher percentages of certain minority 

subgroups, higher poverty rates, and lower percentages of home ownership, even after 

controlling for contextual factors such as population density and the effects of spatial 

autocorrelation. Taken together, this indicates higher urban heat levels in impoverished and 

racially segregated census tracts which may be considered more socially vulnerable. Many of 

these socially vulnerable neighborhoods are located in areas away from the coast and toward the 
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center of the peninsula, where LST levels are substantially higher. Central Pinellas (cities of East 

and West Lealman, and Pinellas Park), with higher percentages of residents of Southeast Asian 

origin, indicating particular social vulnerability, seem especially impacted. Overall, these 

findings are consistent with prior studies in other metropolitan areas (e.g., Harlan et al 2006; 

Chow el al. 2012; Hondula et al. 2012) and support the primacy of race, ethnicity, and poverty in 

explaining patterns of thermal inequity.  

Our findings suggest that the urban built environment itself should be considered as an 

important factor which influences the spatial distribution of urban heat across different, and 

sometimes more vulnerable demographic and socioeconomic groups. This association of urban 

heat and socially vulnerable groups reveals the presence of what can be characterized as a 

landscape of thermal inequity within this metropolitan area. The geographic distribution of urban 

heat and its adverse effects on vulnerable populations is a rapidly growing research area, 

especially considering the recent pattern of heat waves in North American cities (Gaffen and 

Ross 1998; Stone et al. 2010). Because of the socio-technical nature of the hazard and its 

embeddedness within the built structure of the urban environment, comprehensive modes for 

surveying urban heat provide a tool for enhancing adaptation and mitigation strategies as the 

impacts of GCC become more pronounced. 
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CHAPTER THREE: 

LANDSCAPES OF THERMAL INEQUITY: 

DISPROPORTIONATE EXPOSURE TO URBAN HEAT IN THE THREE LARGEST 

U.S. CITIES
2
 

 

Introduction 

In the past two decades, several high mortality heatwave events have been recorded in 

developed countries. A 2003 heatwave in Western Europe lead to an estimated 50,000 to 70,000 

excess deaths (Robine et al. 2008). In 2010, a heatwave combined with atmospheric pollution 

caused by fires in the Moscow region of the Russian Federation caused an excess mortality of 

over 11,000 (Shaposhnikov et al. 2014). While these events were region-wide in scope, the 2003 

heatwave affected densely populated urban areas like Paris, France, and its suburbs which 

suffered the highest rates of mortality (Fouillet et al. 2006).  The urban heat island (UHI) effect 

is the result of several complex factors, including higher structural density and lower amounts of 

vegetation in urban areas, which create an urban microclimate that is generally hotter than 

surrounding rural areas (Oke 1992). The relationship between the UHI and elevated mortality has 

been documented by prior studies (Buechley 1972; Clarke 1972; Smoyer 1998). Additionally, 

higher rates of heat related mortality have been linked with levels of urbanization and 

acclimatization, as indicated in an analysis of 50 cities of the U.S. (Medina-Ramón et al. 2007). 

                                                           
2
 Portions of this chapter have been previously published in Environmental Research Letters, 2015, 10(11), 115005 

and have been reproduced with permission from IOP Science. 
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The U.S. is a highly urbanized nation with almost 81 percent of its population living in 

cities and towns (U.S. Census 2010). This high rate of urbanization increases risks from heat 

waves for densely situated populations impacted by local climate factors such as the UHI. Urban 

heat, compounded by periodic and region-wide heat wave events, leads to elevated rates of 

morbidity and mortality in U.S. cities (Kalkstein and Greene 1997; McGeehin and Mirabelli 

2001; Sheridan, Kalkstein, and Kalkstein 2008; Zanobetti et al. 2008). Heat waves are currently 

the most significant weather-related cause of mortality in the U.S. (NOAA, NWS 2013).  Several 

high mortality events in the U.S. provide examples of the devastating effect of heat waves on 

urban populations during 1980, 1988, 1995, and 1999. The 1995 Chicago heat wave has been the 

subject of extensive analysis that found socially vulnerable people, which includes low income, 

elderly, African-American, and/or socially isolated residents, to be disproportionately exposed 

(Semenza et al. 1996; Klinenberg 2002). Subsequent studies of different urban areas of the U.S. 

have confirmed a linkage between urban heat exposure and factors of social vulnerability 

(McGeehin and Mirabelli 2001; O’Neill et al. 2003; Uejio et al. 2011).  Because of the seeming 

inequitable exposure to the risk posed by urban heat on racial/ethnic minorities and economically 

disadvantaged populations, the problem is beginning to be framed as an environmental justice 

issue, specifically one of climate justice.  

The environmental injustice implications of exposure to urban heat for individuals of 

lower socioeconomic status were first discussed in Klinenberg’s (2002) sociological analysis of 

the 1995 Chicago heatwave. This association between heat exposure and social vulnerability was 

explored in more detail by Harlan et al.’s (2006) quantitative research on “heat-related health 

inequalities.” Jenerette et al. (2011) expanded this work to emphasize the role of land use and 

land cover in influencing thermal spatial structure and the development of distinct neighborhood 
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microclimates. These neighborhood level thermal patterns are elements of an “urban heat 

riskscape” associated with racial/ethnic minority and lower socioeconomic status. Subsequent 

research by Chow et al. (2012) examined the “spatial distribution of vulnerability” using a wider 

range of demographic and socioeconomic variables, but focused on the same urban area 

(Phoenix, Arizona), as Harlan and Jenerette (2006; 2011). Using data related to heat exposure 

and other climate-based risk factors in conjunction with an expanded set of variables 

representing socioeconomic status, Grineski et al. (2012 and 2013) examined the bi-national 

sister cities of El Paso and Ciudad Juarez to find social inequities in exposure to climate change 

in a study area extending across national boundaries of the U.S. and Mexico, respectively. Both 

these studies extend the concept of the “climate gap” (Morello-Frosch et al. 2009; Grineski et al. 

2012, 2013) by which racial/ethnic minority or lower socioeconomic status residents are both 

inequitably exposed to climate change and possess inadequate resources to mitigate or adapt to 

its adverse effects. 

The environmental justice concerns outlined in the previously discussed research have 

been expanded in recent work, but most heat-related studies focus on the U.S. Southwest.  The 

largest U.S. metropolitan areas that are often characterized by higher proportions of African-

Americans have not been investigated in this research. While some urban heat studies have been 

conducted outside the U.S. Southwest (McGeehin and Mirabelli 2001; O’Neill et al. 2003; Uejio 

et al. 2011), these scholars have not explored the climate justice dimension, or attempted to 

compare urban areas from different regions of the U.S.  A comparative analytical framework that 

includes a broader range of socially vulnerable groups and allows generalizations across the 

various urban heat studies is lacking. A systematic and comparative analysis of large urban areas 

in the U.S. is necessary to provide a foundation for evaluating the association between elevated 
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urban heat and the location of socially vulnerable populations, and enhance our understanding of 

the socio-spatial consequences of excess heat exposure. 

This article contributes to the emerging environmental justice literature on heat-related 

inequities by evaluating the spatial and social distribution of urban heat in the three largest U.S. 

cities: New York, New York; Chicago, Illinois; and Los Angeles, California. By using an index 

of landscape-related factors collectively related to elevated urban heat, the spatial patterns of 

association with specific socio-demographic characteristics are examined at the neighborhood 

level. The objective is to determine if racial/minorities and socioeconomically disadvantaged 

residents in these three cities are distributed inequitably with respect to an Urban Heat Risk 

Index, developed by combining three characteristics of the urban thermal landscape: land surface 

temperature, vegetation abundance, and structural density of the built urban environment. Our 

use of a single risk indicator that combines three heat-related variables allows us to better 

develop and evaluate a comparative framework for analyzing patterns of heat-related inequities 

than what has been previously done. Statistical associations between this Urban Heat Risk Index 

and multiple indicators of social vulnerability are examined and compared to determine how the 

socio-spatial distribution of urban heat varies across the three largest cities of the U.S.  

 

Data and Methods 

The three study areas were selected based on their large population size and the future 

risk posed by global climate change. The three most populous metropolitan areas in the U. S. 

were chosen for analysis: New York City, Los Angeles, and Chicago. Climate change modeling 

based on the Intergovernmental Panel on Climate Change A2 emissions scenario using National 

Center for Atmospheric Research  mid-century (2045-2059) climate models (NCAR/UCAR 



www.manaraa.com

42 
 

CESM 2013) indicate that all three cities may be substantially impacted in the future by 

increasing temperatures, with temperature anomalies ranging from 2.0° to 3.0° C. The basic unit 

of analysis for this study are census tracts defined by 2010 Decennial U.S. Census boundaries. 

Census tracts are one of the basic spatial units of U.S. census enumeration that are commonly 

used to represent neighborhoods and include a population that ranges from 2,500 to 8,000 

residents. Geographic boundaries for each study area were delineated by selecting contiguous 

areas of 75% impervious surface, and then including all census tracts within the counties 

containing those areas of higher ISA. These study area boundaries are depicted in Figure 7, 

which shows that the counties still include urban and suburban areas of their respective cities. 

Higher percentages of impervious surface area (% ISA) have been used in prior studies as an 

indicator of urban land uses (Lu and Weng 2006) and urban cores have been defined as areas 

with greater than 75% ISA (Imhoff et al. 2010). For this study, areas of high % ISA were 

identified using the 2006 National Land Cover Dataset before county boundaries were selected. 

This technique defines the spatial extent of urban areas through their impact to the landscape, 

rather than arbitrarily selecting the areas included in U.S. Census Metropolitan Statistical Area 

(MSA) boundaries. 
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Figure 7. The spatial distribution of percent impervious surface area greater than 75% in New York City, Chicago, and Los Angeles. 
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This study emphasizes the interaction of physical factors related to urban heat and social 

vulnerability at the neighborhood level to assess environmental injustice. LANDSAT Thematic 

Mapper (TM) remote sensing derived data is used to quantify the physical factors of structural 

density, vegetation abundance, and temperature. Use of LANDSAT data allowed for the 

representation of urban heat at moderate spatial resolutions of 30 to 120 meters, which are 

sufficient for neighborhood level measurements. The dependent variable in this study denotes the 

physical aspects of urban heat-related risk, while the independent variables represent the 

demographic and socioeconomic characteristics of residents in our study areas. 

 

 

Dependent Variable: UHRI 

A quantitative index of biophysical factors related to urban heat, referred to as the Urban 

Heat Risk Index (UHRI), was developed and used as the dependent variable for our statistical 

analysis. The values were estimated using the equation: 

UHRI = (LST + NDBI) –  NDVI  

Where LST is land surface temperature, NDBI is the normalized difference built-up index which 

assesses built structure density, and NDVI the normalized difference vegetation index, which is 

an indicator of vegetation abundance. Prior studies have indicated strong correlations between 

landscape factors of NDBI and NDVI and the UHI (Dousset and Gourmelon 2003; Chen et al. 

2003). LST, in particular, has been used to delineate the spatial extent of the surface UHI (Voogt 

2000; Voogt and Oke 2003). Additionally, LST has been shown in previous research to have a 

positive statistical association with rates of heat-related morbidity and mortality (Johnson and 

Wilson 2009; Johnson et al. 2009; Hondula et al. 2012).  We used the equal weighting approach 
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because there was no logical reason to assume that one of these factors contributes differently to 

urban heat exposure.  The values of LST, NDBI, and NDVI for each pixel in the study areas 

were derived using LANDSAT satellite Thematic Mapper (TM) 5 remotely sensed imagery. A 

single clear-sky image from the summer of 2010 was selected for each of the study areas which 

provided the maximum atmospheric temperature of the available images. In the case of LST, the 

mono-window algorithm based on the thermal radiance transfer equation was used to extract 

temperature values from the imagery data (Qin et al. 2001; Pu et al. 2006). The NDBI was 

calculated using the same imagery with the equation: 𝐷𝐵𝐼 =  
(𝑆𝑊𝐼𝑅−𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅+𝑁𝐼𝑅)
 , where SWIR is the 

shortwave infrared band and NIR is the near- infrared band, or LANDSAT TM bands 5 and 4 

respectively. The NDVI was calculated in the same way using the equation: 𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
  

using LANDSAT bands 3 and 4. LST, NDBI, and NDVI values were then averaged for the land 

portion of each census tract, excluding water from calculations of temperature, structural density, 

and vegetation. The values of these biophysical indicators were then standardized using their z-

scores before calculation of the UHRI scores for each tract.  The tract level distribution of the 

UHRI in our study areas is shown in Figure 8. 
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Figure 8. The spatial distribution of the UHRI in New York City, Chicago, and Los Angeles.

Urban Heat Risk Index 
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Independent Variables 

The environmental justice consequences of urban heat were assessed with census tract 

level socio-demographic data from the 2010 U.S. Census and 2009-2013 five-year American 

Community Survey (ACS) estimates. Our analysis utilizes variables representing extremes of age 

(children aged five and under and elderly aged 65 and over), race (Non-Hispanic Black and 

Asian), ethnicity (Hispanic), median household income, educational attainment (percent 25 and 

over who are high school graduates), and home ownership (owner-occupied homes), with the 

addition of the Gini coefficient to measure neighborhood level income inequality. The Gini 

coefficient from the ACS is a summary measure of income inequality that ranges from 0 to 1. A 

value of 0 indicates perfect equality where all households in a census tract have equal incomes, 

while a value of one indicates perfect inequality where only one household has any income. This 

index has been used as a measure of socioeconomic vulnerability and coping capacity in 

previous environmental justice studies (Elliott et al. 2004; Chakraborty et al. 2014). Variables 

representing the percent of disabled persons (disabled for any reason) and linguistic isolation 

(percent of households in which no one over 14 years of age speaks English) were also included. 

Disability status and linguistic isolation may reinforce social isolation, potentially diminishing 

the ability of individuals to understand or respond to public health heat warnings and mitigation 

measures. The variables indicating social vulnerability can then be assessed for their relevance in 

specific urban and regional contexts using methodologies that are discussed below. Table 4 

includes a list. 
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Table 4. Variables used in the study of Chicago, Los Angeles, and New York City. 

 

Variable Name 

 

Data Source 

 

Dates 

Dependent Variable: 

Urban Heat Risk Index 

(UHRI) 

Calculated as: 

(LST+NDVI)-NDBI 

Derived from remotely 

sensed variables below: 

Land Surface Temperature 

(LST) 

LANDSAT 5, TM sensor, 120 

meter resolution 

New York - July 4, 2010; 

Chicago - Sept 10, 2010;                  

Los Angeles- Sept 20, 2010 Normalized Difference 

Built-up Index (NDBI) 

LANDSAT 5, TM sensor, 30 

meter resolution 

Normalized Difference 

Vegetation Index (NDVI) 

LANDSAT 5, TM sensor, 30 

meter resolution 

Independent Variables:   

% Age 5 and under U.S. Census 2010  

% Age 65 and over U.S. Census 2010 

%Non-Hispanic Black U.S. Census 2010  

% Asian U.S. Census 2010  

% Hispanic U.S. Census 2010  

% Disabled 2013 5-year ACS estimates 2009-2013 

% High School graduate  2013 5-year ACS estimates 2009-2013 

% Non-English speaking 2013 5-year ACS estimates 2009-2013 

% Owner-occupied homes U.S. Census  2010  

Median household income 2013 5-year ACS estimates 2009-2013 

Gini coefficient 2013 5-year ACS estimates 2009-2013 

Population density U.S. Census 2010 

 

  Statistical Methods 

Each study area was analyzed separately using all populated census tracts which were not 

missing data for any of our Independent variables. First, descriptive statistics were used to 

compare the three different study areas. Next, scatterplots of the UHRI and each of our 

independent variables were examined and natural logarithmic transformations of specific 

variables were calculated to account for nonlinear relationships. Subsequently, all variable values 

were standardized and bivariate correlation analysis was conducted using parametric tests, based 

on Pearson’s correlation coefficient.  
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The relationship between the dependent variable (UHRI) and the set of independent 

variables in each study area were then analyzed using the ordinary least-squares (OLS) 

regression method.  While OLS regression has been used extensively in the analysis of 

environmental and social inequities, it assumes that the observations and regression errors are 

independent. This assumption is likely to be invalid due to the clustering of similar values in 

space, or spatial autocorrelation (Kissling and Carl 2008; Chakraborty 2011). We tested the 

residuals for spatial autocorrelation using the global and univariate Moran’s I-statistic (Anselin 

and Bera 1998). The Moran’s I for the OLS models associated with all three study areas 

exhibited significant (p<.001) spatial autocorrelation in the residuals, implying that they failed to 

meet the assumption of independence. Consequently, we used simultaneous autoregressive 

(SAR) models, which consider the spatial autocorrelation as an additional variable in the 

regression equation to estimate its influence simultaneously with that of the other variables 

(Chakraborty 2011). To determine the appropriate SAR model specification, the Lagrange 

Multiplier (LM) statistic was utilized (Anselin 2005). The LM test indicated that spatial error 

models should be used in all three study areas.  

Spatial regression models are based on the relationship between neighboring analytical 

units, using either contiguity or distance between tract centroids to define a spatial weights 

matrix. Both the queen contiguity approach and iterative selection of distance bands were tested, 

but the distance-based approach was more successful in reducing residual spatial autocorrelation, 

as measured by global Moran’s I-statistic, to a statistically non-significant level in each study 

area. The optimal distances for these bands were determined to be 7,300, 8,500, and 7,400 

meters, respectively, for New York City, Chicago, and Los Angeles. Finally, the 

multicollinearity condition index associated with the regression models were found to be smaller 
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than 8.0 in all three study areas, ruling out significant correlations between the independent 

variables. 

 

Results 

Differences in the natural and built landscape of each study area greatly impacted the 

geographic distribution of UHRI scores, particularly in Los Angeles with its sparsely populated 

desert areas. Visual examination of the spatial patterns of percentage impervious surface over 

75% and the UHRI in Figures 7 and 8 indicate considerable overlap of these two factors in all 

three study areas, which should be expected since structural density is one of the variables that 

comprise the UHRI. However, in the case of Los Angeles, the relationship changes in the 

extreme northern desert areas that have relatively higher UHRI levels but lower levels of 

impervious surface. The descriptive statistics for all variables in our three study areas are 

summarized in Table 5. 

Of the three study areas, Los Angeles with its sprawling urban structure and arid region 

north of the San Gabriel Mountains has the highest mean NDBI, and lowest NDVI, indicating 

that it is extensively built-up and sparsely vegetated, with areas of exposed rock and soil. One 

limitation of the NDBI is its inability to delineate areas of barren soil from built urban structure, 

(Zha et al. 2003). Los Angeles also had the highest mean LST and the date that the remote 

sensing image was taken (September 20, 2010) coincided with a heatwave in the Los Angeles 

region during which the daily high atmospheric temperature exceeded 40°C.
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Table 5. Descriptive statistics for dependent and independent variables at the census tract level for Chicago, Los Angeles, and New 

York City.   

 

                                                                                                                                                                                         

 

Variable 

New York  Chicago Los Angeles 

Min Max Mean Min Max Mean Min Max Mean 

LST(°C) 22.68 51.61 44.46 25.53 35.24 31.32 30.17 53.20 45.41 

NDBI -0.194 0.233 0.081 -0.094 0.209 0.062 -0.020 0.338 0.138 

NDVI -0.082 0.696 0.184 -0.049 0.562 0.276 -0.074 0.372 0.094 

UHRI (standardized) -9.24 4.75 0 -7.44 5.84 0 -10.76 8.66 0 

% Age 5 and under 0 22.70 6.13 0 16.00 6.60 0 15.20 6.42 

% Age 65 and over 0 82.60 12.77 0 52.40 11.60 0.10 82.40 11.38 

% Non-Hispanic Black 0 96.51 21.95 0.03 99.34 23.53 0 90.75 7.19 

% Asian 0 88.13 10.71 0 88.88 5.98 0 87.20 14.28 

% Hispanic 0 93.20 26.01 0.10 98.70 20.70 3.00 99.00 44.09 

% Disabled 0 74.00 9.42 0 36.00 9.84 0 88.20 9.23 

% High school 

education 

0 100.00 72.56 28.50 100.00 84.83 23.50 100.00 76.46 

% Non-English 

speaking  

0 74.70 12.79 0 53.20 7.69 0 79.10 14.99 

% Owner-occupied 

homes 

0 100.00 45.31 0 100.00 61.71 0 96.70 50.60 

Median household 

income 

9675 243622 67285 9550 236250 63,840 6406 231648 64,829 

Gini coefficient 0.0189 0.6750 0.4325 0.2092 0.7215 0.4204 0.0600 0.7200 0.4154 

Population density 5 114639 14610 12 196409 4215 1 36483 4739 

Number of tracts  3096 1838 2927 
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In contrast to Los Angeles, the cities of Chicago and New York are more extensively 

vegetated and have lower structural density as measured by the NDVI and NDBI. Chicago had 

the lowest mean LST, the imagery been taken on September 12, 2010, a day when atmospheric 

temperature reached only 30°C. Cloud-free LANDSAT TM imagery taken on a day of warmer 

atmospheric temperatures was not available for Chicago that year. The data for New York 

revealed a higher mean NDBI and lower NDVI than Chicago, indicative of greater structural 

density and less extensive vegetation. New York was also much warmer than Chicago, with a 

mean LST only 1° C cooler than Los Angeles. This is because the New York data was taken on 

July 4, 2010, with a daily high temperature of 35°C and also because it was a longer summer 

day, with an hour more insolation at the time of image capture than for either Chicago or Los 

Angeles. The values of LST, NDBI and NDVI were standardized prior to the calculation of the 

UHRI variable. In the case of LST, this standardization compensated for differences in 

temperature levels for the dates the remote sensing imagery was taken. The UHRI scores indicate 

the highest mean values for New York, followed by Los Angeles and Chicago. This can be partly 

explained by the very high LST and low NDVI values for tracts in the desert areas of Los 

Angeles, some of which were excluded from the study due to their low population values of less 

than 500. LST in the New York study area ranged widely, and landcover varies from marshes to 

concrete and asphalt, however unlike Los Angeles, the hottest tracts still contained exposed 

populations. While the landscape of Los Angeles may have greater extremes in temperature and 

less vegetation, the manner in which its population is exposed to these risks differs from that of 

Chicago and New York. 

Examination of descriptive statistics for the independent variables (Table 5) reveals 

considerable differences in socio-demographic characteristics that reflect the diverse urban 
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ecologies of these study areas. New York City has a much higher population density than the 

other two study areas, an indicator of the intensity and extent of its residential built urban 

structure. There are substantial differences in the socioeconomic and racial/ethnic composition of 

the three cities. Los Angeles has a lower Non-Hispanic Black and higher Hispanic mean 

population percentages in its tracts than the other cities and also a higher percentage of 

linguistically isolated households. Chicago had the highest Non-Hispanic Black and lowest 

Asian mean population, but also the highest mean percentage of high school graduates.  

Bivariate correlations of the UHRI scores with the independent variables, listed in Table 

6, revealed similar statistical relationships across the three study areas for most variables. The 

age-related variables show consistent significant and positive associations with the UHRI for 

percentage Age 5 and under, and negative for Age 65 and over. This limited exposure appears to 

be inconsistent with prior research which suggests that elderly adults are not only a particularly 

vulnerable group, but may have higher levels of exposure (Semenza et al. 1996; Klinenberg 

2002; Fouillet et al. 2006). However, socioeconomic status may be a confounding factor since 

the percentage of individuals aged 65 or more shows a significant and positive relationship with 

home ownership based on Pearson’s correlation coefficient in all three study areas, and with 

median household income in New York City and Los Angeles. The percentages of Non-Hispanic 

Black and Hispanic residents are consistently and positively associated with the UHRI, 

suggesting that tracts with higher proportions of these racial/ethnic groups are exposed to higher 

levels of biophysical risk. The Asian subgroup indicates a significantly positive correlation only 

in New York City, but significantly negative relationships in the two other areas.  
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Table 6. Bivariate correlation of Urban Heat Risk Index with census tract level independent 

variables for  Chicago, Los Angeles, and New York City. 

 
Pearson’s r 

Variable New York Chicago Los Angeles 

Angeles 

   

% Age 5 and under .218** .328** .426**    

% Age 65 and over -.323** -.259** -.416**    

% Non-Hispanic Blacka .249** .216** .212**    

% Asiana .195** -.076** -.099**    

% Hispanicb .222** .435** .547**    

% Disabled .207** .157** .146**    

% High school graduatec -.130** -.505** -.591**    

% Non-English speakingd .430** .376** .488**    

% Owner-occupied homes -.671** -.534** -.442**    

Median household income -.541** -.515** -.625**    

Gini coefficient .175** .066** -.181**    

Population densitya .537** .317** .357**    

**p < .01  Variables natural log transformed: a= Los Angeles, New York; b= Chicago, New 

York; c= Chicago, Los Angeles; d= Chicago, Los Angeles, New York 

 

In terms of the other variables, the percentage with a disability shows positive and 

significant correlations with the UHRI in all three areas. Educational attainment measured by 

percentage of high school graduates was significantly and negatively associated, while linguistic 

isolation was significant and positive in all three study areas. Relationships were particularly 

strong, significant, and consistent between the UHRI and socioeconomic characteristics. Median 

household income and home ownership show significant and negative relationships with the 

UHRI, indicating that greater biophysical risk is associated with lower socioeconomic status in 

all three study areas. Finally, population density is consistently significant and positive across the 

three study areas. 
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 A spatial error regression analysis (regression coefficients) was run for the three cities, 

the results of which are summarized in Table 7. The percentage of individuals aged 5 and under 

was significantly and negatively related with UHRI in New York City and Los Angeles, but 

positively related in Chicago. The significance and direction of relations between UHRI and the 

variable age 65 and over was significant and negative in New York City and Los Angeles, but 

non-significant in Chicago. The proportion of racial/ethnic minorities was generally higher in 

areas of greater urban heat risk. Non-Hispanic Black and Hispanics were significantly and 

positively related to the UHRI in Chicago and Los Angeles, while Asians were significantly and 

positively associated with the UHRI in all three study areas. Disability was significant and 

positive only in Los Angeles, The percentage of high school graduates significant and negative 

in Los Angeles. Linguistic isolation measured by percent Non-English speaking households was 

significant and positive in both New York and Chicago. 

Table 7. Spatial error regression of Urban Heat Risk Index for Chicago, Los Angeles and 

New York City. 

***p < .001; **p < .01; *p < .05     Variables natural log transformed: a= Los Angeles, New York; b= 

Chicago, New York; c= Chicago, Los Angeles; d= Chicago, Los Angeles, New York  

 New York Chicago Los Angeles 

% Age 5 and under -.048** .066** -.092** 

% Age 65 and over -.134** -.019 -.111** 

% Non-Hispanic Blacka -.013 .067*** .095** 

% Asiana .031*** .089** .169** 

% Hispanicb -.111** .145** .297** 

% Disabled .014 -.005 .044*** 

% HS graduatec -.007 -.013 -.120** 

% Non-English speakingd .079** .068** .011 

% Owner-occupied homes -.269** -.019 -.211** 

Median HH income -.076** -.144** -.259** 

Gini coefficient -.076** -.135** -.123** 

Population densitya .496** -.009 -.229** 

Spatial error term (rho) .772** .960** .906** 

Akaike Info Criterion 5237.82 3106.46 5567.99 

Pseudo r-squared 0.69 0.70 0.62 

Moran’s I -0.001 -0.001 0.001 
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The socioeconomic variables generally showed the same consistent patterns of significant 

and negative associations with the UHRI that were revealed in the bivariate correlation analysis. 

Home ownership was significant and negative in New York City and Los Angeles, while median 

household income showed a significant negative relationship across all three study areas. The 

Gini coefficient was also significantly negatively associated, indicating greater economic 

homogeneity for tracts with elevated UHRI. These three factors collectively imply that there is a 

consistent relationship between lower socioeconomic status and increased UHRI across our study 

areas. 

Our spatial definition of study regions for this analysis relies on the selection of areas 

with high percentages of contiguous impervious surface and the political boundaries of the 

associated counties. This approach results in the inclusion of urban, suburban, and sometimes 

rural areas within the counties selected for analysis. The final step of our analysis focuses on 

assessing how the statistical relationships with the UHRI observed in Table 7 would change if 

rural and suburban areas with relatively lower population density were excluded from each of the 

three study areas. To compare the results of the broader metropolitan areas with those of their 

core urban areas, restricted and more structurally dense areal extents were chosen and spatial 

regression models were estimated for these core urban areas.  The New York City study area was 

redefined using data from its five boroughs and Hudson County, New Jersey, Chicago was 

restricted to the boundaries of Cook County, and only areas south of the San Gabriel Mountains 

were included in the Los Angeles study area. This resulted in the exclusion of rural areas in north 

Long Island and Westchester County with higher vegetation and low structural density (New 

York), rural areas north and west of Cook County (Chicago), and the arid and less vegetated 

northern areas which produce high NDBI values and yet are not structurally dense (Los 
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Angeles). For estimating the spatial error models for these core urban areas, spatial weights were 

recalculated resulting in 5,100, 6,000, and 7,200 meter distance bands for New York City, 

Chicago, and Los Angeles, respectively. The regression results for both the larger metropolitan 

and core urban areas are summarized in Table 8. In both Chicago and Los Angeles, the statistical 

significance and signs for most independent variables are similar in the larger metropolitan and 

core urban areas, although regression coefficients for a few variables indicate higher values. The 

results for New York, however, reveal substantial changes when the predominantly rural areas 

are excluded from the analysis. When the more structurally dense and socio-demographically 

heterogeneous core area is considered, the signs of the coefficients relating the UHRI to the Gini 

coefficient, median household income, and percent high school graduates all change to become 

significant and positive, as do the coefficients for the variables percent age 5 and under and 

percent Hispanic population. Additionally, percent Asian residents becomes non-significant, the 

percent disabled becomes significant, and home owner-occupancy becomes non-significant in 

the model for the core area of New York City. These directional changes in statistical 

associations with the UHRI for eight of our 12 independent variables in New York City 

emphasize the importance of scale and spatial extent when selecting study areas for urban heat 

analysis. The relatively minor changes in significance of the variables in Chicago and Los 

Angeles indicates the stability of the UHRI model in those areas, though goodness-of-fit as 

indicated by the pseudo r-squared and Akaike Information Criterion is smaller in models from 

the core urban areas when compared to the models based on the larger study area extents for all 

three study areas. 
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Table 8. Comparison of spatial error regression model results for broader metropolitan and core 

urban areas for Chicago, Los Angeles, and New York City. 

***p < .001; **p < .01; *p < .05 

Variables natural log transformed: a= Los Angeles, New York; b= Chicago, New York; c= 

Chicago, Los Angeles; d= Chicago, Los Angeles, New York 

 

Concluding Discussion 

The effects of urbanization and an increasing global temperature baseline make cities 

important sites for studying racial/ethnic and socioeconomic inequities in heat exposure and its 

negative consequences. There have been recent indications that urban areas have experienced 

higher incidences of heat waves, with half of the 217 cities in a recent global study showing 

 New York Chicago Los Angeles 

 Broader 

metro 

Core 

urban 

area 

Broader 

metro 

Core 

urban 

area 

Broader 

metro 

Core 

urban area % Age 5 and 

under 

-.048** .177** .066** .421** -.092** -.108  

% Age 65 and 

over 
-.134** -.357** -.019 -.015 -.111** -.229** 

% Non-

Hispanic Blacka 

-.013 -.099 .067*** .387** .095** .322** 

% Asiana .031*** -.016 .089** .315** .169** .196** 

% Hispanicb -.111** .328** .145** .575** .297** .484** 

% Disabled .014 .113* -.005 .065 .044*** .204** 

% HS graduatec  -.007 .398** -.013 .0003 -.120** -.539** 

% Non-English 

speakingd 

.079** .344** .068** .179** .011 .168** 

% Owner-

occupied homes 

-.269** -.074 -.019 .219* -.211** -.285** 

Median HH 

income 

-.076** .219** -.144** -.165 -.259** -.567** 

Gini coefficient -.076** .439** -.135** .082 -.123** -.050 

Population 

densitya 

.496** .498** -.009 .082 -.229** -.171** 

Spatial error 

term (rho) 

.772** .945** .960** .957** .906** .161
 

AIC 5237.82 8803.88 3106.46 4762.67 5567.99 10532.50 
Pseudo r-

squared 

0.69 0.49 0.70 0.61 0.62 0.49 

Moran’s I -0.001 0.001 -0.001 <.001 0.001 <.001 

N (no. of tracts) 3,096 2,327 1,838 1,318 2,927 2,638 
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increases in extreme hot days from 1973 to 2012 (Mishra et al. 2015). The current pace of 

urbanization combined with temperature increases will probably expand the number of people 

exposed to the adverse health effects of episodic heat waves. In this context, our study focused 

on documenting and analyzing landscapes of thermal inequity which are developing in the U.S., 

but exist at a variety of scales across our planet. The dynamic behind this landscape are the 

anthropogenic modifications to the land surface by urbanization and chemical composition of the 

atmosphere through industrialization. This landscape of thermal inequity is influenced by aspects 

of a physical landscape produced by changes in structural density and vegetation discernible in 

the urban heat island effect and its alteration of urban microclimates. It also manifests as a 

transformation to the landscape due to changes in regional climate resulting in greater 

temperature extremes and shifting rainfall patterns. Finally, it is also a social landscape of 

community location and varying urban ecology.  

Our study provides a comparative assessment of urban heat exposure resulting from 

changes to the physical landscape and factors relating to urban ecology which shape the spatial 

pattern of social vulnerability in the three largest U.S. cities. By developing a new risk index, our 

research allows the systematic and comparative analysis of urban heat in different cities. There 

are, however, certain limitations associated with the evaluation of disproportionate heat risk 

using urban landscape factors. One limitation is that mitigating or adaptive strategies like air 

conditioning are not accounted for. Most people in urban areas spend a higher portion of their 

time indoors, which would be mitigated by the presence or absence of air conditioning, which is 

itself potentially influenced by socioeconomic status. Additionally, the presence or absence of 

private backyard shade access can also factor into heat risk. Although these variables were not 

included in our study, these factors might alter the statistical relationships that we found. 
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Synthesizing across the three study areas, we find consistent and significant associations between 

the risk factors of urban heat and lower socioeconomic status of urban residents, which are 

similar to those reported in previous studies of other U.S. cities. The greatest consistencies in 

association were present in the socioeconomic variables related to household income and home 

ownership, and also the Gini coefficient, while the demographic variables suggest that local 

patterns in the distribution of racial/ethnic minority neighborhoods influence the relationship 

between heat exposure and social vulnerability. Higher risk burdens imposed on neighborhoods 

occupied by African-American and Hispanic residents were consistently evident in the bivariate 

correlations, and in all areas except New York in the multiple regression analysis. Linguistic 

isolation was also a significant factor in all areas except for Los Angeles. We also found 

disproportionate exposure to heat risk for neighborhoods that contain a higher proportion of 

disabled individuals and those who lack high school education. Our comparison of analytical 

results from the broader metropolitan and core urban areas indicated that scale and spatial extent 

of the study area is an important consideration for analyzing thermal inequity. The spatial error 

model estimated for core urban areas revealed several changes in the results for New York City, 

but indicated relatively minor changes in the significance and signs of variables for Chicago and 

Los Angeles. These differences are indicative of the varying urban ecologies of the study areas, 

as well as their relationships with structural and vegetation density and land surface temperature.  

In conclusion, our statistical findings point to a climate justice issue that is related to the “climate 

gap” suggesting that people and households with reduced economic means to adapt to and 

mitigate the effects of urban heat have greater exposure to its adverse effects (Grineski et al. 

2013; Shonkoff et al. 2011). The association between urban heat risk and social vulnerability 

indicates the need for improved urban heat island and heat wave mitigation strategies. Since the 
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problem of urban heat exposure is complicated by local factors related to the urban structure and 

by an increasing global temperature baseline, it demands policy decisions at multiple scales. 

Structuring effective strategies involves increased research, planning, and resource allocation in 

areas of cities where minorities and low-income populations are concentrated and more exposed 

to extreme heat. A major impediment here is the lack of awareness among urban planners and 

public health officials of the risk burdens imposed on socially vulnerable residents by elevated 

greenhouse gas and co-pollutant emissions and their amplification by urban heat (Mendez 2015). 

However, the landscape of thermal inequity found in the three largest U.S. cities represents an 

important example of climate injustice faced by communities characterized by racial/ethnic 

minorities and socioeconomically disadvantaged residents and underscores the need to conduct 

more comparative analyses and develop appropriate policy solutions. 
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CHAPTER FOUR                                                                                                                 

EXPLORING THE RELATIONSHIP BETWEEN RESIDENTIAL SEGREGATION AND 

THERMAL INEQUITY IN TWENTY U.S. CITIES 

 

Introduction 

In the U.S., racial, ethnic, and economic segregation has played a crucial role in 

establishing the life constraints and environmental exposures of minorities and people with 

incomes below the poverty level. The intertwining of social differences with environmental 

exposure in different places is a primary component of environmental justice concerns (Walker 

2012). Much of environmental justice scholarship has been driven by the insight that the 

stratification of groups of socially disadvantaged people into segregated neighborhoods presents 

different environmental exposures leading to inequity: communities of people with the least 

socioeconomic means and power to adapt to or mitigate their risk are often the most exposed 

(Lopez 2002; Morello-Frosch et al. 2002; Morello-Frosch and Jesdale 2006; Morello-Frosch and 

Lopez 2006). At the core of this insight is the realization that environmental exposure is often 

contingent upon the relative economic and political power of groups within society and the siting 

of neighborhoods where socially disadvantaged people live within urban areas. However, debate 

over the “relative predictive power of race and income,” and whether one factor is more 

important than the other in determining environmental exposure has occupied much attention 

(Downey and Hawkins 2009). Ranking the primacy of one factor over the other, income or race, 
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overlooks their intertwining, neglecting the fundamental economic and social dynamics of 

neighborhood segregation. Segregation is a multifaceted social process, involving not only the 

separation of people based on race or ethnicity, but their clustering, concentration and isolation 

from other groups (Massey and Denton 1989). As such, it directly affects the inequitable 

exposure of minorities, especially those with low income, to a wide range of environmental 

hazards. Segregation is an essential cause of distributive injustices in environmental exposure.     

 Environmental justice scholars have considered the inequity of exposure to a broad range 

of hazards, human-made and natural. In the case of climate change, multiple exposures to risk 

are being presented and much has been written about the natural hazards of sea level rise, 

increasing storm occurrence and intensity, and the vulnerability of coastal areas (Cutter et al., 

2009). Changes to the temperature baseline and the occurrence of temperature anomalies, 

presents another type of risk driven by climate change (Gaffen and Ross 1998; Hales et al. 2003; 

Meehl and Tebaldi 2004). Increases in temperature are associated with episodic heatwaves which 

have a documented history of increasing mortality rates (Ellis and Nelson, 1978; Kalkstein and 

Davis 1989; Kalkstein and Greene 1997; McGeehin and Mirabelli 2001; Sheridan, Kalkstein, 

A.J., and Kalkstein, L.S. 2008). Children (Vanos 2015), older adults (Semenza et al. 1999; 

Whitman et al. 1997), people living with disabilities or of lower socioeconomic status (Curriero 

et al. 2002; Harlan et al. 2006), and some minorities (O’Neill et al. 2003; Uejio et al. 2011; 

Whitman et al. 1997)  are considered to be socially vulnerable, or at higher risk than the general 

public from heat waves. In the U.S., the 1995 Chicago heat wave has been cited as an example of 

social inequity in the distribution of risk (Klinenberg 1999). More recently, two extreme heat 

events in Europe (2003, 2010) resulted in exceptionally high mortality rates (Poumadere et al. 

2005; Shaposhnikov et al. 2014 ), and the Third National Climate Assessment in 2014 cites 
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extreme heat events among the key human health concerns associated with global climate change 

(Melillo et al. 2014). Recent studies present the possibility of an increase in summer temperature 

anomalies (Christidis et al. 2015), such that over the next two decades, over half the world’s 

population will be exposed to summer mean temperatures in excess of the historically hottest 

summer (Mueller et al. 2016). The increasing summer mean temperature presents particular risk 

to urbanized populations, where the twin anthropogenic causes of higher temperatures; climate 

change and the urban heat island (UHI) places large populations at heightened risk. This 

exposure is not equally distributed spatially, but can be localized, with specific neighborhoods at 

greater risk (G. Huang et al. 2011). Social differences to exposure to urban heat is rooted in the 

sometimes localized spatial distribution of urban heat in micro-urban heat islands (Aniello et al. 

1995), the segregated structure of cities where socially vulnerable groups sometimes live in the 

densest, least vegetated areas with higher heat exposure (Harlan et al 2013), and the difficulty 

socially vulnerable groups have in adapting to and mitigating their exposure. Aside from passing 

concern about mass casualties during heatwaves, differential exposure to urban heat and the 

ability of socially vulnerable groups to cope with it has been overlooked by most environmental 

justice researchers. 

Since environmental justice focuses on racial and ecomnomic disparity in environmental 

exposure, residential segregation, with its impact on the spatial arrangement of communities, is 

of critical importance. Numerous studies have examined the role of metropolitan level residential 

segregation in health outcomes in the public health literature (Hart 1998; Collins 1999; Cooper 

2001; Kramer 2008; Osypuk 2008) however, the association between racial/ethnic segregation 

has not been examined in the same detail. An early study by Lopez (2002) examined the 

relationship of air toxics exposure and Black/White segregation using the dissimilarity index in 
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44 U.S. metropolitan areas. Its results suggested that the combination of segregation, 

Black/White poverty, and higher levels of manufacturing employment within MSAs were 

significant factors in increased exposure. Another national study of air toxics exposure at the 

census block group level by Morello-Frosch and Jesdale in 2006 found significant health 

disparities by economic status and Black/White and Hispanic/White segregation. This was 

followed by Downey’s (2007) study of air toxics exposure and Black/White and Hispanic/White 

segregation which presented complex findings. There were considerable differences in exposure 

between the 61 metropolitan areas, with higher levels of exposure for Black populations in some 

areas and for Hispanics in others, suggesting a complicated relationship between this form of 

environmental exposure, segregation, and economic inequality. Finally, Jesdale et al. (2013) 

examined the relationship between heat-risk related land cover, the location of minority 

communities, and segregation across the nation. Greater minority presence and higher 

segregation levels corresponded with lower levels of tree canopy, one indicator of higher 

exposure to urban heat. Aside from the previously mentioned study, the literature relating 

race/ethnicity, measures of segregation, and exposure to urban heat is mostly undeveloped, 

leaving questions regarding their role in inequitable exposure to urban heat largely unanswered.       

This paper examines social inequities in the distribution of urban heat in twenty of the 

largest U.S. cities, many of which are typified by conditions of extreme segregation also called 

“hypersegregation” (Massey and Denton 1989). Previous studies have shown that in many urban 

areas socially vulnerable groups are associated with greater health risk (McGeehin and Mirabelli 

2001; O’Neill et al. 2003) from exposure to urban heat (Huang et al. 2011; Uejio et al. 2011). 

This association has been found in areas with higher proportions of racial and ethnic minorities 

(Grineski et al. 2012; Collins et al. 2013) and with populations of lower socioeconomic status 
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(Harlan et al. 2006; Mitchell and Chakraborty 2015). In fact, this is a global urban problem 

arising out of the structure of cities and suburbs as Byrne et al. (2016) examined in lower income 

neighborhoods of Gold Coast City in Australia which have higher exposure to urban heat than 

wealthier areas. However, aside from Jesdale et al.’s work (2013), the relationship with 

segregation has not been systematically analyzed.This paper extends the environmental justice 

literature on urban heat by examining whether cities with higher levels racial and ethnic 

segregation, and which contain neighborhoods with greater socioeconomic disparity, have 

heightened exposure. It proposes that socially vulnerable groups are exposed to higher levels of 

urban heat, then examines whether the segregated social structure of U.S. cities is also associated 

with inequitable exposure. This paper employs multilevel modeling techniques to examine 

whether segregation impacts the association of race, ethnicity, and income in exposure to one 

aspect of climate change: neighborhood level differences in exposure to urban heat by testing 

two hypotheses: 

H1: Within metropolitan areas, higher levels of urban heat as measured by an urban heat risk 

index (UHRI) are associated with larger proportions of racial and ethnic minorities and with 

lower socioeconomic status of neighborhoods.  

H2: Between metropolitan areas, greater levels of racial and ethnic segregation within a 

metropolitan area is associated with higher exposure to urban heat as measured by the UHRI.   

Both hypotheses are tested using multi-level modeling (MLM) which allows variables nested at 

different levels of grouping to be statistically tested for their association. In the case of this study 

H1 will be assessed within metropolitan areas at the census tract level to discern the significance 

of the relationship between race, ethnicity, socioeconomic status and higher exposure to urban 
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heat. H2 involves a metropolitan level examination of segregation between 20 metropolitan 

statistical areas (MSA) widely distributed across the U.S. These hypotheses aim to examine 

whether lower socioeconomic and racial/ethnic minority status are associated with exposure to 

higher levels of urban heat, and whether residential segregation influences this association. 

 

Data and Methods 

This study utilizes a retrospective, cross-sectional design with two components.  The first 

component is a within MSA analysis of the association of the UHRI and variables indicative of 

demographic and socioeconomic status. The second component is a between MSA analysis of 

the UHRI and five indices of segregation identified by Massey and Denton (1989) as indicators 

of hypersegregation. Segregation has typically been examined using only the well-known 

dissimilarity index (ID) to quantify the evenness of distribution for two groups (Lopez 2002; 

Morello-Frosch and Jesdale 2006; Downey 2007). The use of a single index has been criticized 

because it understates the level and the complexity of segregation, especially for Black 

neighborhoods, which entail other spatial aspects such as centralization, clustering, 

concentration, and isolation (Acevedo-Garcia et al. 2003). The aforementioned five indices have 

been used in different combinations to assess levels of segregation nationally, notably by the 

U.S. Census Bureau (2002), to evaluate changes in urban segregation over time (Reardon and 

O’Sullivan 2004; Galster and Cutsinger 2007). 

The 20 U.S.cities included as study areas were selected on the basis of their large 

population size, wide regional distribution, and projected increase in extreme heating days by 

mid-century due to global climate change. First, MSAs with the highest population sizes were 
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identified. They were then divided by the four U.S. Census regions. Five cities from each of the 

four U.S. Census regions were selected, providing a wide distribution of urban areas across the 

country, representing both coastal and mid-continental areas. No more than one city per state was 

selected. Consequently, even though Dallas and Houston Texas are two of the largest cities by 

population, the larger city, Dallas with the greater increase in predicted extreme heating days, 

was chosen to represent cities most at risk and also prevent the overrepresentation of particular 

states. The resulting sample of cities listed in Table 9 are home to nearly one-third of the U.S. 

population. Data on the number of extreme heat events (EHEs) from 1975-1995, and their 

predicted number in 2050 are displayed (Greene et al. 2011).  

Table 9: List of the twenty MSAs selected. 

Region City 

Average Extreme 

Heat Event Days 

1975-1995* 

Predicted 

Extreme Heat 

Event Days 2050 

2010 Population 

Northeast New York City 11 55 19,000,000 

 Philadelphia 6 54 5,900,000 

 Boston 11 51 4,600,000 

 Providence 7 38 1,600,000 

 Hartford 6 31 1,200,000 

South Dallas 11 22 6,500,000 

 

Atlanta 5 48 5,400,000 

 

Tampa 3 36 2,800,000 

 

Washington D.C. 16 53 5,600,000 

 

Memphis 9 18 1,300,000 

Midwest Chicago 5 18 9,500,000 

 Detroit 9 15 4,300,000 

 Minneapolis 8 23 3,300,000 

 St. Louis 11 35 2,800,000 

 Cincinnati 4 22 2,100,000 

West Los Angeles 1 60 12,900,000 

 

Phoenix 7 84 4,200,000 

 

Seattle 2 54 3,500,000 

 

Denver 9 88 2,600,000 

 

Portland 4 42 2,300,000 

Total 20     101,200,000 

   *Estimated by Greene et al., 2011 using NCAR, CCM3 climate models 
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In order to visualize the possible impact of climate change on the sample cities, data 

predicting increases in high temperature anomalies based on the National Center for 

Atmospheric Research (NCAR) mid-century (2045-2059) climate models (NCAR/UCAR CESM 

2014) was mapped. These models are produced from the Community Climate System Model 

(CCSM) which simulates a variety of climate change scenarios established by the IPCC Fourth 

Assessment report. The map in Figure 9 displays a pattern of increasing summer temperature 

anomalies which affects the entire U.S., but is especially strong in the west and Midwest and for 

the cities represented in the sample in particular.   

 
Figure 9. NCAR Community Climate System Model (CCMS) of Midcentury (2040-2059) air 

temperature anomalies for summer months (June-August).  
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The basic unit of analysis in the study at level 1 are census tracts, as defined by the 2010 

U.S. Decennial Census boundaries. While various methods of aggregating and disaggregating 

U.S. Census data have been proposed to represent residential neighborhoods, census tracts, with 

their population average of around 4,000 (U.S. Census Bureau 2013) are frequently used in 

urban heat studies to define general neighborhood boundaries (Smoyer 1998; Johnson et al. 

2009b). In this study, 17,807 census tracts provide the basic data regarding heat exposure and 

demographic and economic condition within the selected MSAs. Census tracts with very low 

population counts, less than 500 residents, were removed from the analysis. The level 2 unit of 

analysis are MSAs in which each of the selected cities (n=20) are located.- 

 

Variables 

Dependent Variable: UHRI 

A quantitative index of biophysical factors related to urban heat, referred to as the urban 

heat risk index (UHRI), was developed and used as the dependent variable for our statistical 

analysis (Mitchell and Chakraborty, 2015). The equation used in this analysis is: 

UHRI = (LST + NDBI) – NDVI  

Where LST is land surface temperature, NDBI is the normalized difference built-up index which 

assesses built structure density, and NDVI the normalized difference vegetation index, which is 

an indicator of vegetation abundance. Prior studies have indicated strong correlations between 

landscape factors of NDBI and NDVI and the UHI (Dousset and Gourmelon 2003; Chen et al. 

2006). LST, in particular, has been used to delineate the spatial extent of the surface UHI (Voogt 

2002; Voogt and Oke 2003). Additionally, LST has been shown in previous research to have a 
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positive statistical association with rates of heat-related morbidity and mortality (Johnson and 

Wilson 2009a; Johnson et al. 2009b; Hondula et al. 2012).  We used the equal weighting 

approach because there was no logical reason to assume that one of these factors contributes 

differentially to urban heat exposure. The values of LST, NDBI, and NDVI for each pixel in the 

study areas were derived using LANDSAT satellite Thematic Mapper (TM) 5 remotely sensed 

imagery. All images were captured on nearly cloud-free or “clear-sky” days during the summer 

of 2010 (May to September) to maintain temporal continuity with census demographic data. If 

multiple images qualified as “clear-sky”, the image taken on the day with the highest 

atmospheric temperature was selected. Processing utilized the mono-window algorithm, which is 

based on the thermal radiance transfer equation, was used in the extraction of temperature values 

(Qin et al. 2001; Pu et al. 2006). LST, NDBI, and NDVI values were then averaged for the land 

portion of each census tract, excluding areas or water from calculations of temperature, structural 

density, and vegetation. The values of these biophysical indicators were then standardized using 

their z-scores before calculation of the UHRI scores for each tract.   

 

Independent Variables – Level 1 Census Tract 

Environmental justice studies conducted in the U.S. commonly rely on the decennial U.S. 

Census or more frequent surveys like the American Community Survey (ACS) to obtain 

information on the socio-demographic characteristics of residential populations. The 2010 U.S. 

Census provides a comprehensive and widely used set of demographic and socioeconomic 

indicators, as well as housing-related attributes. A review of prior public health studies (Basu and 

Ostro 2008; Johnson et al. 2009b; Reid et al. 2009; Uejio et al. 2011) show a wide variety of U.S. 

Census derived variables of age, race and ethnicity, gender, income level, education level, and 
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housing status that have been used as indicators of susceptibility to urban heat.  The present 

study uses a control variable of population density, demographic variables related to race and 

ethnicity, and three variables related to socioeconomic status: median household income, the 

proportion of home owner-occupancy, and proportion of high school graduates at the census tract 

level (Table 10).   

Table 10. Dependent and Level 1 variables at the census tract level. Level 2 variables at MSA 

level. 

    

Variable Name 

 

Data Source 

 

Dates 

Dependent Variable:    

Land Surface Temperature 

(LST) 

LANDSAT 5, TM sensor, 

120 meter resolution 

UHRI for each MSA 

processed from same date  

Normalized Difference 

Vegetation Index (NDVI) 

Normalized Difference  Built-

up Index (NDBI) 

Independent Variables: 

LANDSAT 5, TM sensor, 30 

meter resolution 

LANDSAT 5, TM sensor, 30 

meter resolution 

Level 1 

imagery for all three values 

in summer 2010  

 

 

 

2010 Non-Hispanic Black % U.S. Census 

Non-Hispanic Asian % U.S. Census 2010  

Hispanic % U.S. Census 2010  

Owner-occupied homes % U.S. Census  2010  

Median household income $ 2013 5-year ACS estimates 2009-2013 

High School graduate % 2013 5-year ACS estimates 2009-2013 

Population density mile
2
 

Independent Variables: 

Dissimilarity index (ID) 

Exposure Index (xPx) 

Clustering (SP) 

Centralization (ACE) 

Concentration (Delta) 

U.S. Census 

Level 2 

U.S. Census  

U.S. Census 

U.S. Census 

U.S. Census 

U.S. Census 

2010 

 

2010 

2010 

2010 

2010 

2010 
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Independent Variables: Level 2 - MSA  

Segregation here refers to the common understanding of the term in the United States as 

the racial or ethnic separation of groups from the majority White population (Holloway et al. 

2012). Segregation and the inequalities which often result are a primary focus of the social 

sciences and an area of concern for advocates of racial, economic, and environmental justice. 

The study of patterns of residential segregation is necessarily spatial, since it involves analysis of 

the distribution of people within communities. Social scientists utilize several different indices to 

measure the level of segregation in areas. The most widely used measures of racial and ethnic 

segregation were classified by Massey and Denton (1989) and concern five dimensions of 

residential distribution across areas: evenness, exposure, clustering, concentration, and 

centralization. These measures capture many facets of segregation: evenness, the distribution of 

groups relative to each other; exposure, the possibility of interaction between or level of isolation 

with/from other groups; clustering, the degree to which minority areas adjoin each other; 

concentration, the relative amount of space occupied by a group; and centralization, the 

closeness of one group to the urban center (US Census 2002).  Many of these measures involve 

global calculations across a wide area, such as a city, county or MSA. They are valid measures of 

segregation across large areas, but with the exception of Wong’s implementation of local indices 

of dissimilarity and isolation, they cannot identify tract level segregation for the purpose of 

targeted public policy application (Wong 2002).  

All values were calculated from US Census 2010 population measurements at the MSA 

level utilizing Geo-Segregation Analyzer version 1.2 (Apparicio 2013). Each segregation index 

value was calculated by comparing Non-Hispanic Whites to each of the three minority groups: 

Non-Hispanic Black, Non-Hispanic Asian, and Hispanic respectively. The indices were selected 
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based on their use in the pioneering work of Massey and Denton (1989), their recommended use 

by Acevedo-Garcia et al. (2003), and their prior use in publications by the US Census Bureau 

(Census 2002). Evenness was measured utilizing the dissimilarity index, notated as ID (Duncan 

and Duncan 1955); exposure with the isolation index - xPx (Bell 1954); concentration with the 

Delta index (Hoover 1941; Duncan et al. 1961); clustering with the spatial proximity index – SP 

(White 1986); and centralization with the absolute centralization index - ACE (Massey and 

Denton 1989). Centralization was computed using census tracts within the ZIP code boundary 

containing the city hall or the municipal center as a proxy for the historical core of the major city 

of each MSA. Table 11 contains details of all independent variables at both levels of analysis.  

Table 11. Descriptive statistics of level 1 demographic, and level 2 segregation variables. 

Variables Tract-level (N=17,807) Mean SD Minimum Maximum 

Population Density per Mile
2 

4,943.80 7,955.22 0.18 196,409.21 

Non-Hispanic Black % 18.52 27.17 0.00 99.34 

Non-Hispanic Asian % 7.96 10.77 0.00 88.88 

Hispanic % 21.20 23.78 0.00 99.00 

Owner-occupied Homes % 57.23 26.13 0.00 100.00 

Median Household Income $  64,341.72 32,629.22 0.00 250,000.00 

High School Graduates % 83.88 15.07 0.00 100.00 

UHRI 0.07 2.71 -8.11 7.06 

Variables MSA-level (N=20) Mean SD Minimum Maximum 

Dissimilarity index (ID)      

Non-Hispanic Black 0.63 0.11 0.44 0.81 

Non-Hispanic Asian 0.40 0.06 0.33 0.52 

Hispanic 0.50 0.11 0.29 0.65 

Isolation Index (xPx)     

Non-Hispanic Black 0.40 0.23 0.08 0.75 

Non-Hispanic Asian 0.13 0.08 0.05 0.31 

Hispanic 0.35 0.19 0.04 0.70 

Clustering (SP)     

Non-Hispanic Black 1.42 0.26 1.06 1.90 

Non-Hispanic Asian 1.08 0.07 1.01 1.29 

Hispanic 1.30 0.22 1.02 1.88 

Concentration (Delta)     

Non-Hispanic Black 0.73 0.11 0.41 0.85 

Non-Hispanic Asian 0.65 0.10 0.50 0.85 

Hispanic 0.68 0.11 0.50 0.85 

Centralization (ACE)     

Non-Hispanic Black 0.67 0.19 0.13 0.87 

Non-Hispanic Asian 0.47 0.28 -0.24 0.86 

Hispanic 0.56 0.22 0.04 0.87 
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Statistical Methods 

A two-level multilevel model was selected for the analysis of the interaction of tract-level 

and MSA level data. Multilevel models (MLM) are the preferred method for the analysis of data 

that are nested at different levels of hierarchy because it is specifically designed to investigate the 

relationships both within and between hierarchically clustered data (Raudenbush and Bryk 

1986). An essential problem with hierarchical data is that individuals within clusters are more 

likely to be exposed to similar conditions, making it more likely that individuals within the 

cluster will be more similar to one another. This violates the assumption of independence of 

observations central to ordinary least squares regression (OLS) methods. MLM accounts for this 

violation of independence, and has advantages over alternate methods which implement linear 

regression to aggregate means of lower-level data at a higher level, or disaggregate the means of 

higher level variables at a lower level (Luke 2004). The primary advantage is that MLM analyzes 

individual level and group-level clustering to account for the variance within and between groups 

simultaneously, properly partitioning variance at the different levels. Additionally, MLM relaxes 

the assumption of independence of observations, adjusting for the effects of the clustering of 

variables within groups. The algorithm utilized by MLM is specifically structured to handle 

hierarchical data, while OLS is not. This study utilized SPSS version 23 by IBM Analytics for 

data editing and sorting into tract level and MSA level datasets. After the data was structured, 

HLM version 7.01 by Scientific Software International was used for construction of the two-

level model and analysis.   

A two-phase approach was taken in creating the model. It is common to test for the 

necessity of MLM techniques by first viewing scatter-plots and the results of an unconstrained 

null model containing only the dependent variable (Luke 2004; Peugh 2010). The results of the 
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null model are then used to calculate the interclass correlation coefficient (ICC) to assess the 

amount of variability attributable at the MSA level. If the variability at the highest level is 

considerable, the independent variables are introduced during a second phase of analysis.  

As part of the first step lines of regression were computed and compared for the 20 MSAs 

with the slopes and intercepts of the socioeconomic and demographic variables. Visual 

inspection showed similar slope and direction for the socioeconomic variables, however, the 

demographic variables show distinct positive and negative relationships. Figures 10a-g display 

the slopes for the dependent variable, UHRI and the level 1 variables. (The results of spatial 

autoregressive modelling of the same data and contained in the appendix confirm this). This 

indicates considerable variability for the demographic variables, but consistency for the 

socioeconomic ones. 

 

Figure 10 a-b. MSA level regression lines for the dependent variable UHRI and socioeconomic 

and demographic variables and: a – tract population density; b - median household income 

(Continued on next page). 
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Figure 10 c-g. MSA level regression lines for the dependent variable UHRI and socioeconomic 

and demographic variables and: c- percentage home ownership occupancy; d – percentage high 

school graduates; e- percentage Non-Hispanic Black; f- percentage Non-Hispanic Asian; g – 

percentage Hispanic of any race. 
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After visual inspection, the next step in constructing a model involved running an 

unconditional, one-way random effects analysis of variance (ANOVA), or null-model. This 

model establishes the proportion of variance attributable at the MSA level. The equation for the 

null model is: 

    Level 1: UHRIij = β0j + rij 

    Level 2: β0j = μ0j 

Where UHRIij is the UHRI for a particular census tract within an MSA. The fixed effect is 

indicated by β0j  - the grand mean across all tracts, and error is split between into two parts – the 

variability between MSAs as μ0j, and the variability between census tracts within each MSA, rij. 

The estimated variance at level 2 of the model is 2.744 and 3.571 at level 1, both figures of 

which are used to calculate the interclass correlation coefficient (ICC) which measures the 

proportion of the variation in UHRI which occurs across the different MSAs. The ICC is 

calculated using the equation: 

ICC =  
𝜏00

(𝜏00 +𝜎2)
 

In the case of this model, the ICC is calculated as 3.571/ (3.571+2.744) = 0.565, meaning that 

MSAs account for 56.5% of the variability of the UHRI among tracts. This indicates that a high 

proportion of the variance is accounted for at the MSA level, suggesting considerable clustering. 

This is not a problem since MLM allows for correlated error structures at different levels.  

This first phase of analysis provides several justifications for building a model containing 

the independent variables. First, from a theoretical standpoint a multi-level approach is 

appropriate because of the nested structure of the variables: tracts contained within MSAs with 
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data at both levels that are unsuitable for aggregation or disaggregation. Second, there is 

sufficient evidence from our graphs (Figure 10a-g) that the slope and intercept of the line of fit 

for the UHRI and demographic variables varies at the MSA level. Third, the high value of the 

ICC indicates considerable variance at the MSA level. All of these indicators signify the 

appropriateness of MLM as a statistical method, allowing the analysis to move to its second 

phase: model building. 

Multilevel Model Construction 

The construction of a model in MLM should follow directly from the research question, 

and the hypothesized relationship of the variables to the dependent variable and to each other 

(Peugh 2010). In this study, the first hypothesis—Within metropolitan areas, higher levels of 

urban heat as measured by an urban heat risk index (UHRI) are associated with larger 

proportions of racial and ethnic minorities and with lower socioeconomic status of 

neighborhoods—considers relationships at the census tract level. This relationship of 

socioeconomic and demographic variables as predictors of increased exposure to urban heat is 

encompassed at level 1. The second hypothesis—Between metropolitan areas, greater levels of 

racial and ethnic segregation within a metropolitan area is associated with higher exposure to 

urban heat as measured by the UHRI—concerns both the census tract and MSA levels. This 

relationship of segregation both to the demographic variables, and directly to urban heat 

exposure is considered at levels 1 and 2. These interrelationships between the UHRI and level 1 

and level 2 variables are depicted in Figure 11. Here the level of exposure to the UHRI—

elevated heat at the tract level—is hypothesized as having a direct relationship with the 

demographic and socioeconomic composition of the tract, and the segregated structure of the 

MSA. A control variable for tract level population density is also added at level 1.  
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               Level 2 MSA                  Level 1 Census Tract                   Dependent Variable                                                                                 
 (Segregation)               (Social Vulnerability)         (Urban Heat Exposure) 

 

 

      

                                         Direct Effects 

 

 

                                             

 

                  

             Control  

 

Figure 11. Structure of the multilevel model with hypothesized relationships. 

 

Because the different level 2 indices of segregation can only compare two groups - Non-

Hispanic Whites to each of the three minority groups- the different demographic classifications 

of race and ethnicity are considered as separate cases of the multilevel model.. This results in the 

race and ethnicity variables being divided into three cases, and the model adjusted and run or 

each case. For instance, one model will solely utilize the proportion of Blacks per tract at level 1 

as the variable for race and ethnicity, keeping all other level 1 variables the same. At level 2 of 

this “Black” model case the segregation indices will be calculated only for the proportion of 

Non-Hispanic Blacks in contrast to Non-Hispanic Whites in that MSA. Table 12 lists the 

Segregation                        

1) Dissimilarity index- ID      

2) Isolation - xPx                 

3) Clustering - SP                

4) Concentration – Delta     

5) Centralization - ACE 

 

Socioeconomic Status   

1) Income $                        

2) Owner-Occupancy %        

3) High School Grad % 

 

 

Demographics                 

1) Race and Ethnicity          

a. Black %                             

b. Asian %                              

c. Hispanic % 

 

Urban Heat 

Risk Index 

(UHRI) 

Structure                            

1) Population Density 
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variables used in each model case: Non-Hispanic Black percentage, Non-Hispanic Asian 

percentage, and Hispanic of any race percentage. 

Table 12: Arrangement of variables in the three cases of the model. 

 Linking 
Variable 

Level 2 
Independent   
Segregation 
N=20 

Level 1 
Dependent 

Level 1                                                                                                  
Independent                                                                                    
N=17,807 

Case 1 MSA Non-Hispanic 
Black 5-
variables 

UHRI tract 
level 

Non-
Hispanic 
Black % 

Pop. 
Density 
ppKm

2 

Median 
Household 
Income $ 

Home 
Owner-
Occupancy 
% 

Education: 
High School 
Graduates % 

Case 2 MSA Non-Hispanic 
Asian 4-
variables 

UHRI tract 
level 

Non-
Hispanic 
Asian % 

Pop. 
Density    
ppKm

2
 

Median 
Household 
Income $ 

Home 
Owner-
Occupancy 
% 

Education: 
High School 
Graduates % 

Case 3 MSA Hispanic                
5-variables 

UHRI tract 
level 

Hispanic 
% 

Pop. 
Density 
ppKm

2
 

Median 
Household 
Income $ 

Home 
Owner-
Occupancy 
% 

Education: 
High School 
Graduates % 

 

 

Centering Decisions 

In MLM, the decision whether or not and how to center (i.e., rescale) the predictor 

variables so that their distributions of values center upon zero is critical to the results (Enders and 

Tofighi 2007). The choice of centering alters the interpretation of the intercept, thereby changing 

how the results of the model are interpreted. If the variables are uncentered and left as raw 

metrics it complicates the interpretation of the regression results when the variables are non-ratio 

and therefore lack a meaningful zero value. Centering the level 1 variables on the group mean- 

within the MSA clusters provides an unbiased estimate of the within group effects (Peugh 2010). 

Alternately, grand-mean centering expresses the predictors at level 1 as deviations from the mean 

value for all MSAs. Grand-mean centering results in slope estimates which combine level 1 and 

level 2 relationships, within MSA and between MSA variation, into an inseparable and 
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ambiguous mix. Grand-mean centering, consequently, is best suited for the analysis of level 2 

relationships, while group mean centering is suited for the analysis of level 1, or level 1 and level 

2 interactions. In the case of the present research question and hypotheses, which arise 

principally out of the relationship of the level 2 variables relating segregation to the level 1 

predictors, group mean centering was utilized. The resulting multilevel UHRI exposure equation 

implements group mean centering at level 1 and grand-mean centering at level 2 where non-ratio 

index values indicative of segregation are used. It accounts for level 1 and level 2 variables as 

fixed effects, while a tract level random intercept allows for differences in the regression 

coefficient value, or magnitude of the differences in the relationship between the UHRI and 

predictor variables across tracts. Additionally, group mean centering of the level 1 variables 

reduces correlations with those at level 2 to zero, reducing multicollinearity as a problem in the 

model estimations (Raudenbush 2004). Collinearity of the level 1 variables was assessed by 

regressing them against UHRI to calculate the variance inflation factor (VIF), which was below 

2.5 in all cases, within tolerances.  For the level 2 variables, there was significant correlation 

between the dissimilarity index and the indices indicative of clustering in the case of Non-

Hispanic Asians, isolation in the case of Non-Hispanic Blacks, and both clustering and isolation 

in the case of Hispanics. In all cases the VIF was below 3.7, indicating that collinearity was 

within tolerances.     

 

 Results 

Multi-level modeling (MLM) was utilized in a statistical analysis of census tracts nested 

within metropolitan statistical areas (MSAs) of 20 cities of the U. S. An urban heat risk index 
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(UHRI) was the dependent variable while socioeconomic and demographic predictor variables at 

the tract level, or level 1 and predictor variables related to segregation at the MSA, or level 2 

were used in creating the model. The model was created to test the relationship of factors 

indicative of segregation with demography, therefore cases were created using variables for Non-

Hispanic Black, Non-Hispanic Asian, and Hispanic race and ethnicity at level 1, with their 

indicators of segregation relative to Non-Hispanic Whites at level 2. The results are summarized 

in Table 13. 
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Table 13: Multilevel modeling analysis results.  

  NULL 
MODEL 

LEVEL 1 MODEL LEVEL 2 MODEL COMBINED MODEL 

ASIAN BLACK HISPANIC ASIAN BLACK HISPANIC ASIAN BLACK HISPANIC 

FIXED EFFECTS               

Intercept -0.968** -0.97** -0.97** -0.97**     -20.63 -5.70 0.27 

LEVEL 1 VARIABLES N=17807              

Population Density   4.3E-5*** 4.4E-5*** 4.3E-5***     4.3E-5*** 4.4E-5*** 4.4E-5*** 

Race/Ethnicity %  0.01*** 1.7E-3*** -1.5-E3*     0.01*** 1.7E-3*** -1.4-E3* 

Owner-Occupied %   -0.02*** -0.02*** -0.02***     -0.02*** -0.02*** -0.02*** 

Med HH Income $  -1.0E-5*** -9.0E-6*** -9.0E-6***     -1.0E-5*** -9.0E-6*** -9.0E-6*** 

HS Graduates %  -0.01*** -0.01*** -0.01***     -0.012*** -0.01*** -0.01*** 

LEVEL 2 VARIABLES N=20             

Intercept       -20.63 -5.70 0.27     

Dissimilarity Index        9.44 15.51** 13.74* 9.44 15.51** 13.82* 

Clustering (SP)       7.80 -2.37 -7.77** 7.79 -2.37 -7.79** 

Isolation Index (xPx)       0.02 -5.55 4.53 0.03 -5.55* 4.55 

Concentration (D)       13.44** 2.28 -3.14 13.44** 2.28 -3.16 

Centralization (ACE)       -2.67 -1.73 4.60 -2.67 -1.73 4.60 

RANDOM EFFECTS                     

Sigma-Squared (r) 2.74 1.82 1.83 1.83 2.74 2.74 2.74 1.82 1.83 1.83 

Tau (u0) 3.57 3.57 3.57 3.57 2.55 2.88 2.27 2.55 2.89 2.29 

VARIANCE COMPONENTS                   

Deviance 68641.62 61380.09 61477.95 61487.13 68602.79 68609.42 68606.09 61344.95 61449.45 61455.45 

Log Likelihood -34320.81 -30690.04 -30738.98 -30743.57 -34301.40 -34304.71 -34303.50 -30672.47 -30724.72 -30727.72 

Chi-Squared 36034.48*** 55822.94*** 55521.56*** 55489.69*** 10686.46*** 17177.93*** 11524.59*** 13839.09*** 25831.84*** 17557.74*** 

AIC 34324.81 30694.04 30742.98 30747.57 34305.40 34308.71 34307.50 30679.17 30728.72 30731.72 

ICC 0.57              

Parameters 2 2 2 2 2 2 2 2 2 2 

*p<.10; **p<.05; ***p<.01
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The first stage of model construction involved calculation of the interclass correlation 

coefficient (ICC) of an unconstrained or null model without predictor variables. This model had 

an ICC value of 0.565, indicative of a high amount of variability at the MSA level. Predictor 

variables were added in the construction of a level 1 and level 2 model, after which model fit was 

assessed.  The addition of the predictor variables improved model fit at each stage as measured 

by the reduction in deviance. The null model had a deviance of 68,641.62 which is reduced to 

61,350.33, 61,449.44, and 61,455.44 in models for the Asian, Black, and Hispanic cases, 

respectively. Similar improvements are noted in reduction of the Akaike Information Criterion 

(AIC), indicating model fit. Additionally, all of the model cases were significant in a chi-squared 

test for differences of the deviances. These results indicate good fit of the combined model with 

improved explanatory power of the predictors in accounting for variance compared with the null 

model or the separate level 1 or level 2 models. 

Since the combined model displayed the best fit, analysis of the results for the individual 

predictor variables in the three cases is justified. At level 1, the control variable for population 

density is significantly and positively related with higher values of UHRI. The likely explanation 

of this are the higher values of temperature (LST), greater structural density (NDBI), and lower 

vegetation (NDVI) in areas with denser residential populations. Turning to the variables 

indicating socioeconomic status, there are consistent highly significant and negative associations 

for all of these variables with the UHRI. Greater tract level median household income, larger 

percentages of home owner-occupancy, and higher percentages of high school graduates are all 

associated with smaller UHRI values, indicating lower exposure to urban heat. This is consistent 

with the scatterplots, and also with a separate spatial autoregressive model (SAR, see appendix) 

run for each MSA with the same level 1 dataset. The different variables indicating minority race 
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and ethnicity are all significant in their association with the UHRI, but with differences in 

direction of the slope. The slope of the line for MSAs in the Black and Asian model cases are 

significantly and positively associated with increasing UHRI value. This indicated greater 

exposure for higher percentages of these two groups. Surprisingly, the slope in the Hispanic case 

is negative and the association is at a lower level of significance, p <.10. The level 1 results 

indicate that the association with higher urban heat levels and the socioeconomic variables are 

consistent at the tract level across MSAs. There was some inconsistency in the demographic 

variables, especially in tracts with greater percentages of Hispanic residents. 

The next step of the analysis considered the association of the segregation related 

variables at level 2 with UHRI at level 1 in the three cases. Predictor variables at level 2 

consisted of the five dimensions of segregation identified by Massey and Denton (1989), 

including evenness or ID for the dissimilarity index, isolation or xPx, concentration or Delta, 

clustering or SP, and finally centralization or ACE. The dissimilarity index at the MSA level is 

significantly and positively associated with the UHRI in the Black and Hispanic cases. This 

indicates that the increased unevenness of the population distribution for the Non-Hispanic Black 

and Hispanic populations in relation to Non-Hispanic Whites is associated with greater exposure 

to urban heat when measured between the MSAs. In the case of concentration, the Asian case 

was significantly and positively associated with the UHRI. So the greater the concentration level 

of Non-Hispanic Asians, the higher the exposure to urban heat. For the isolation variable, the 

Black case showed a significant and negative association with the UHRI, indicating that lower 

levels of isolation are associated with greater urban heat exposure. Finally, clustering is 

negatively and significantly associated with UHRI for the Hispanic case, meaning that lower 
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levels of Hispanic clustering are associated with higher UHRI levels.  Centralization was not 

significantly associated with the UHRI at the MSA level in any of the cases.  

Overall, each model presents different associations for the demographic variables and the 

UHRI. In the Black case, there are highly significant positive associations across tracts within the 

MSAs. Review of the descriptive statistics for level 2 in Table 3 shows that the Non-Hispanic 

Black variable has the highest segregation measures of any demographic group. When the 

indicators of segregation at the MSA level are entered into the Black model case, uneven 

distribution of the Black population is a significant factor in increased urban heat exposure. 

However, isolation appears to be a protective factor in the Black case, since lower isolation was 

associated with greater urban heat exposure. The segregation indicator for concentration, the 

relative amount of space occupied by the demographic group, is significant and positive for 

Asians. At level 1, viewing the lines of regression for the Non-Hispanic Asian percentage 

variable and the UHRI reveals pronounced slopes with a less ambiguous pattern than for the 

Non-Hispanic Black percentage variable. There is a significant, positive relationship with a 

higher coefficient of the Non-Hispanic Asian percentage variable and the UHRI. Finally, in the 

Hispanic case, the negative association of the demographic variable with urban heat is surprising. 

The dissimilarity index was significant and positive, indicating that evenness in the distribution 

of the Hispanic community relative to Whites increases exposure. However, the index for 

clustering was significant and negative, so tracts with higher percentages of Hispanics that are 

more tightly clustered may be a protective factor in urban heat exposure.   
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Discussion  

The original research question focuses on investigating whether: (a) minority and/or 

lower socioeconomic status neighborhoods have greater exposure to urban heat in urban areas, 

and (b) segregation at the MSA level a significant factor in increased minority exposure? These 

questions focus on concerns about socioeconomic and racial/ethnic status and their interplay in 

the inequitable exposure to hazards. Our study expands prior environmental justice research by 

demonstrating that the socially and technically constructed urban environment presents 

differential exposure to neighborhoods to produce a landscape of thermal inequity. This 

landscape manifests itself technologically through the built urban structure of buildings, roads, 

and factories with their thermal capacity to store and emit heat, one aspect of urban 

microclimates. The second technologically based contributor in the formation of this landscape 

are the processes of industrial production which emit greenhouse gases, causing an increasing 

temperature baseline and rising number of summer temperature anomalies attendant to global 

climate change. Socially, the landscape of thermal inequity arises from settlement patterns 

subject to segregation and economic inequality which establish the urban ecology of each city. 

The combinations of these technological and social factors contribute to a landscape which 

defines the level of heat exposure for individuals. Our hypotheses address the social dimension 

of this landscape by examining socioeconomic and minority status and whether segregation is 

also associated with greater urban heat exposure.    

Regarding the first hypothesis, the results of this study suggest that neighborhoods of 

lower socioeconomic status have greater exposure to urban heat. There are consistent 

associations for census tracts with higher levels of the UHRI and lower income, home 

ownership, and education levels across MSAs. This is borne out by examination of the lines of 
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regression for the 20 cities in this study, and by the significant associations between variables for 

the multi-level models. Results for the demographic indicators, however, differ for the racial and 

ethnic groups. Viewing the lines of regression for the 20 cities reveals ambiguous relationships 

across the three variables representing the percentage of Non-Hispanic Blacks, Non-Hispanic 

Asians and Hispanics. While significant positive associations exist in the Asian and Black model 

cases, the Hispanic model case is significant and negative.  This finding corresponds with Jesdale 

et al.’s national study (2013) which used a multigroup dissimilarity index to account for 

segregation and found a high probability of exposure to heat-related land cover for areas with 

high percentages of Non-Hispanic Blacks and Asians, but a weaker probability of exposure in 

Hispanic areas. Blacks and Asians had a 52% and 32% higher probability than Whites of living 

in conditions with greater exposure to heat-risk related land cover while the probability for 

Hispanics was 21%. These results indicate that the portion of the first hypothesis relating to 

lower socioeconomic status and inequitable exposure to urban heat is validated under the study’s 

model. However, the association of urban heat with race and ethnicity is more complex.  

The second hypothesis in this study was tested to determine whether residential 

segregation of minority racial and ethnic groups from Non-Hispanic Whites could account for 

some of the observed variance between MSAs. The multi-dimensional aspect of residential 

segregation was accounted for by using five indicators, allowing a more nuanced examination of 

its spatial manifestation in cities. Greater levels of segregation in at least one of the five 

indicators were associated with greater levels of exposure for each demographic group: the 

dissimilarity index indicative of evenness of distribution relative to Whites in the Black and 

Hispanic model cases, and the Delta index of concentration in the Asian model case. However, 

in the Hispanic model case, greater clustering was significant and negative, while in the Black 
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model case isolation was significant and negative in the relationship with increasing urban heat 

indicated by the UHRI. These results arise from the complex and historically contingent urban 

ecology of different demographic groups. Because the residential settlement of specific 

demographic groups differ from city to city, generalizations are more difficult to make. For 

instance, associations between the centralization of minority populations and their exposure to 

urban heat depend on the history of minority settlement within the MSA. Bolin et al. (2013) use 

the example of Hispanic settlement in Phoenix and contrast it with other cities, like Los Angeles, 

in order to emphasize how the social forces which shape neighborhoods are connected with land 

use and land cover patterns and greater exposure to urban heat. Grineski et al. (2013) discuss the 

impact of changing economic, social, and environmental conditions shape neighborhoods to 

produce inequitable exposure to heat in Ciudad Juárez. Similar social contingencies make 

generalizations about the exposure of Black neighborhoods in the “inner city” dependent on 

which city is being studied. Urban revitalization and gentrification have changed the 

neighborhood structure of many socioeconomically dynamic post-industrial cities in a process 

described by Ehrenhalt (2012) as “demographic inversion.” In these instances, the urban core has 

become a desirable location for predominantly educated, affluent, and White young urbanites 

desiring the amenities available in downtown locations. Gentrification displaces minorities and 

urban poor in central cities, who seek affordable housing alternatives in the inner ring suburbs 

where the housing stock developed in the 1950’s is now declining in condition and value. These 

shifts are likely to reduce minority exposure to urban heat. Despite this, general associations of 

the dissimilarity index between the MSAs in this study indicate that this aspect of segregation is 

significant in both Non-Hispanic Black and Hispanic exposure. Consequently, caution is needed 

when generalizing segregation and demographic associations between higher exposure to urban 
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heat and minority status. The socioeconomic disparities, measured by income, home ownership, 

and lower levels of education are consistently significant predictors of greater heat exposure.      

 

Conclusion 

The application of multilevel modeling in this study provides insight into the interaction 

of a social phenomenon – segregation and its involvement in neighborhood level environmental 

exposure to urban heat. From an environmental justice perspective, this underscores how 

structural social factors are intertwined and function with the built structure of urban areas to 

present different levels of environmental exposure. Both of these factors of structure, social and 

built, contribute in creating the landscape of urban areas, resulting in patterns of thermal 

exposure to different groups depending on where they live within residential areas. In the case of 

thermal exposure, in which the urban heat island and an increasing temperature baseline interact, 

the source of the hazard is not a specific toxic source, but rather the urban structure and the 

processes of industrial production themselves. Bullard has said “Because of the complexity of 

the climate change crisis, we cannot continue to plan (climate mitigation and adaptation) for it 

using the tools of the past….we cannot assume that a uniform plan can work for all in terms of 

ensuring social justice.” (Bullard 2016). In the case of thermal inequity, where the material 

arrangement and density of cities themselves, and not a specific point source of environmental 

exposure is present, the redesign of urban structures and addition of vegetation to lower the 

thermal impact on neighborhoods is an issue. Utilizing tools like multilevel modelling enable 

environmental justice researchers to better understand the underlying social dynamics of 

environmental exposure so that communities most at risk are identified and attention focused on 
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more targeted, effective social policy, and urban design. While the material arrangement of cities 

can be altered using a variety of strategies, residential segregation is the broader and more 

complex issue in this problem. The persisting social justice issue of racially and ethnically 

segregated residential patterns and their intertwining with lower socioeconomic status continues 

to define the life possibilities and environmental exposures of people.  
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CHAPTER FIVE: 

CONCLUSION 

An increasing global temperature baseline and the projected expansion in number of 

extreme heating days has engaged the attention of natural hazards researchers on the public 

health implications of heat waves. Because of their high population density and the continued 

pace of urbanization, much of the public health impact of heat waves falls on urban areas, both in 

developed and less-developed nations. The high risk to urbanized populations focuses attention 

on urban heat as a topic relevant to urban climatology, natural hazards, and climate justice.  

Uneven and inequitable exposure of populations in cities is the result of both the variable 

intensity of urban heat and the social structure of cities. Urban morphologies cause variations in 

urban heat leading to differing biophysical vulnerability. The varying urban ecologies of cities 

create differences in social vulnerability. The combination of the biophysical dimension of 

vulnerability and social vulnerability can be understood using Cutter’s theory of hazards-of-place 

as a theoretical framework. This dissertation shows how the differential exposure to urban heat 

by socially vulnerable groups leads to inequity of exposure. This inequity is a problem of 

distributive injustice which is evident in the major U.S. cities examined in this study.  

This dissertation has addressed the need for a comprehensive and systematic analysis of 

the thermal pattern of major U.S. cities using a critical geography perspective. By extending the  

research conducted by Morello-Frosch (2002; 2006; 2013), Harlan (2006; 2013), Jenerette 

(2011), Jesdale (2006; 2013), and other scholars working on the issue of urban heat risk and 
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climate change it contributes to natural hazards research and the emerging fields of climate 

justice and vulnerability studies. It expands upon GIS methods established by prior 

environmental justice and public health studies conducted at the metropolitan scale (Grineski et 

al. 2012; Johnson et al. 2012; Collins et al. 2013) to examine many of the most populous and 

structurally dense U.S. metropolitan areas. These areas are at high risk of increased extreme 

heating days - places of elevated biophysical vulnerability, but also have different settlement 

patterns and place-based differences creating varying social vulnerability. The term “landscape 

of thermal inequity” describes the interaction of a physical and social structure, shaped by the 

human activities which create our cities. Like other environmental justice issues, the most 

abstracted byproduct of modern life—risk, falls disproportionately on those who are least able to 

cope with or mitigate its effects. Conscious consideration of this landscape, its environmental 

effects and impact on human well-being, is necessary to establish the need for and possibility of 

its physical and social restructuring along more equitable lines. 

 

Contribution of each article 

The first article, in chapter 2, expands on established methodologies for the examination 

of the association of variables related to social vulnerability and exposure to elevated LST. In the 

Pinellas County study area census tracts with larger proportions of socially disadvantaged people 

and with higher proportions of some minorities were associated with higher temperature. This is 

due to the ability of economically affluent people to choose residences in neighborhoods with 

greater access to amenities, like waterfront locations and parks, with lower structural density thus 

lessening their exposure to higher LST. The second article, in chapter 3, implements a composite 
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dependent variable, the UHRI, provides greater context to urban heat than simply using LST. By 

studying the three largest cities in the U.S. the influence of urban ecologies with diverse racial 

and ethnic populations yielded different statistical associations, while socioeconomic 

disadvantage retained its consistent association with urban heat exposure as observed in the 

Pinellas County study. In the third article, chapter 4, a large-scale study of 20 cities at both tract 

and MSA levels consistently showed that neighborhoods with lower socioeconomic status are 

likely to experience elevated urban heat levels. A statistical model which tested five variables 

associated with segregation allowed for a multidimensional examination of this important social 

process, and the association of urban heat with racial and ethnic differences of U.S. cities. 

Overall, the models showed significant and positive associations for the proportion of Black and 

Asian residents and exposure to increased UHRI, but significantly negative associations for the 

proportion of Hispanic residents. The study’s findings also suggest that the indicators of 

segregation, especially the dissimilarity index indicative of minority and non-Hispanic White 

residential unevenness, were significantly associated with increased exposure to urban heat.  

The three articles make three methodological and theoretical contributions to the 

emerging climate justice literature. First, by conducting cross-sectional studies which retain 

consistent aggregation at the census tract level, allowing for generalizations about urban heat in 

U.S. cities. Second, the studies are consistent in their findings which relate lower socioeconomic 

status of census tracts with higher levels of LST and the UHRI. A variety of statistical techniques  

that include bivariate correlations, ordinary least squares regression, spatial autoregressive 

models, and multilevel modeling all yielded results that indicate the association of increased 

urban heat and lower socioeconomic status, suggesting that distributive inequities exist across 

urban areas of the U.S. Third, while the statistical results for minority groups were less 
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consistent, they nevertheless indicate that significant associations exist depending on the specific 

urban ecology of the city. Additionally, segregation is a significant contributor in the association 

of race and ethnicity and exposure with higher levels of urban heat as measured by the UHRI.   

 

Limitations and Further Research 

Among the empirical limitations of this dissertation is the absence of data related to 

health outcomes for areas with elevated urban heat. The scope of this research did not extend to 

the use of public health data which could relate specific urban heat patterns to morbidity and 

mortality rates. While the premise was not empirically tested, there are indications in the 

literature that health outcomes are related to variations in urban heat and factors of social 

vulnerability. Studies by Smoyer (1998) in St. Louis and by Harlan et al. (2016) in Phoenix 

noted the association of higher urban heat and socioeconomic disadvantage and increased rates 

of mortality. Another issue arises from regional variation in climate and urban structure. This 

dissertation did not address regional differences in exposure to urban heat, a topic which is of 

interest considering the regional impacts of a higher temperature baseline and the projected 

increase in days of extreme heat conditions. A separate spatial regression analysis (SAR) of the 

twenty cities may indicate regional differences between the south and the rest of the country. For 

instance, four of the five southern MSAs failed to indicate significant associations between the 

UHRI and median household income (Appendix H). Regional racial and ethnic differences were 

not within the scope of this dissertation and should be explored.  

Theoretically this work is related to that of Jenerette et al. (2011) and that of Morello-

Frosch and Lopez (2006) and their exploration of “riskscapes” specific to particular urban areas. 
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It expands the riskscape hypothesis within the framework of geography and environmental 

justice – proposing that the social and physical landscape establishes the level of risk for 

different neighborhoods. Because the scope of this work is limited to cities of the U.S., its 

specific findings are unique within that particular social and urban context. In the U.S., like 

elsewhere, urban patterns reflect the social and technological currents of specific historical eras. 

Residential segregation was imposed through widespread exclusionary zoning, real estate 

steering and redlining (Jackson 1980). These practices established the inequity in residential 

settlement patterns which persists to this day. Many of the cities selected as study areas 

underwent considerable suburbanization during the post-war period. The expansion of 

transportation networks into areas surrounding cities increasing the availability of cheap land 

leading to sprawling subdivisions, distant from the previously established urban core (Cohen 

2004). The era of suburbanization was also characterized by the large-scale abandonment of 

central cities by White middle-class families termed “White-flight.” In the present era, many 

downtowns are undergoing gentrification, and a demographic inversion which is the converse of 

suburbanization (Ehrenhalt 2012). The downtowns of economically prosperous cities are being 

structurally and socially transformed by this process. While these patterns may be specific to 

U.S. cities, by using the hazards-of-place model as a theoretical construct, the same mode of 

analysis using the UHRI to represent biophysical vulnerability and different variables for social 

vulnerability could be applied in different urban contexts. Additionally, the term landscape of 

thermal inequity and its critical geography perspective could be generally applied to the issue of 

urban heat and distributive environmental justice since it encompasses varying social and urban 

contexts.  
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In summary, these studies have explored inequities of exposure to urban heat within a 

climate justice framework. The literature, up to this point, has largely consisted of separate fields 

of research: urban climatology, natural hazards, and public health. These present different 

understandings of an issue which demands broad perspective, especially to recognize social 

factors in the structuring of urban ecologies. This involves addressing the history of different 

communities in cities in order to understand the structure of their landscapes: social and built. 

Factors like residential segregation have been embedded into the urban structure through a 

variety of policies, yet this has been inadequately developed as an explanation for present 

distributional inequities in the exposure to hazards related to climate change. A climate justice 

approach offers a coherent framework for the broad recognition of these issues, an essential step 

toward developing new policy solutions. 
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Appendix A: 

Workflow for processing LANDSAT thermal imagery for Pinellas County study using the 

mono-window algorithm.  

TM thermal imagery processing for LST image 

 

 

 

 

 

  

     

 

 

 

 

 

 

 

 

 

REMOTE SENSING DATA SELECTION 

AND ACQUISITION                                                                  

A) Landsat TM imagery, bands 1-6.                                                            

B) Verification of quality control for 

georeferencing and radiometric correction.  

C) Clipping of images to study area. 

 

CONSTRUCTION OF 

EMISSIVITY IMAGE                              

A) Construction of water layer with 

0.99 emissivity                            

B) Construction of vegetation layer 

with 0.985                                  

C) Construction of impervious 

surface layer with emissivity of 

0.945                                           

D) Combination of layers in 

emissivity image 

 

LANDSAT TM BAND 6 – 

Thermal at-sensor radiance 

image 

 

ATMOSPHERIC DATA 

COLLECTION                                      

A) Water vapor content g cm2             

B) Near-surface temperature data 

at satellite over-flight date/time                        

from GPSMET & radiosonde 

 MONO-WINDOW ALGORITHM PROGRAM             

A) Input of at-sensor radiance text file                              

B) Input of emissivity text file                                                 

C) Input of water vapor content                                                              

D) Input of near-surface temperature                                            

E) Input of MODTRAN atmospheric model                           

1) 1976 USA                                                                                    

2) Tropical (selected)                                          

3) Mid-lat N Summer                                                                  

4) Mid-lat N Winter 

TEXT FILE OF LAND SURFACE TEMPERATURE 

IMAGE 
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Appendix B: 

Moran’s I and Spatial Weights: Chicago, Los Angeles, New York City, and Pinellas County. Output of GeoDa ver. 1.6.7.9 

Chicago ordinary least squares regression results with variables standardized. ZBio_Risk is UHRI. Significant Moran’s I indicating 

spatial autocorrelation effects of model.  Scatterplot of results after 8500 meter spatial weights matrix using spatial error method. 
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Los Angeles ordinary least squares regression results with variables standardized. ZBio_Risk is UHRI. Significant Moran’s I 

indicating spatial autocorrelation effects of model.  Scatterplot of results after 7400 meter spatial weights matrix using spatial error 

method. 
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New York City ordinary least squares regression results, with variables standardized. ZBio_Risk is UHRI. Significant Moran’s I 

indicating spatial autocorrelation of model.  Scatterplot of results after 7300 meter spatial weights matrix using spatial error method. 
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Pinellas County ordinary least squares regression results, with variables standardized. ZMean_1 is LST. Significant Moran’s I 

indicating spatial autocorrelation. Scatterplot of results after 2400 meter spatial weights matrix using spatial error method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



www.manaraa.com

115 
 

Appendix C: 

Table of Climate Data 

 

Climate Data and Population 2010 with Predicted Increase in Heating Days by 2050 

MSA STATE REGION CLIMATE TYPE 
KOPPEN 

CLASS 
HEATING DAYS- 

CURRENT* 

INCREASE IN 
HEATING DAYS  

BY 2050* 

NEW TOTAL 
HEATING 

DAYS 
MSA SIZE  
(millions) 

Atlanta GA South Humid Subtropical Cfa 5 43 48 5.4 

Boston MA Northeast Humid Continental Dfa 11 40 51 4.6 

Chicago IL Midwest Humid Continental Dfa 5 13 18 9.5 

Cincinnati OH Midwest Humid Continental Dfa 4 18 22 2.1 

Dallas TX South Humid Subtropical Cfa 11 11 22 6.5 

Denver CO West Semiarid Steppe Bsk 9 79 88 2.6 

Detroit MI Midwest Humid Continental Dfa 9 6 15 4.3 

Hartford CT Northeast Humid Continental Dfa 6 25 31 1.2 

Los Angeles CA West Mediterranean Csa 1 59 60 12.9 

Memphis TN South Humid Subtropical Cfa 9 9 18 1.3 

Minneapolis MN Midwest Humid Continental Dfb 8 15 23 3.3 

New York NY Northeast Humid Continental Dfa 11 44 55 19 

Philadelphia PA Northeast Humid Continental Dfa 6 48 54 5.9 

Phoenix AZ West Midlatitude Desert Bwh 7 77 84 4.2 

Portland OR West Marine Westcoast Cfb 4 38 42 2.3 

Providence RI Northeast Humid Continental Dfa 7 31 38 1.6 

Seattle WA West Marine Westcoast Cfb 2 52 54 3.5 

St Louis MO Midwest Humid Continental Dfa 11 24 35 2.8 

Tampa FL South Humid Subtropical Cfa 3 33 36 2.8 

Washington  DC South Humid Subtropical Cfa 16 37 53 5.7 

*Source: Natural Resources Defense Council, May 2012 https://www.nrdc.org/sites/default/files/killer-summer-heat-report.pdf 

https://www.nrdc.org/sites/default/files/killer-summer-heat-report.pdf
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Appendix D: 

Table of Atmospheric Data  

 

Land Surface Temperature Processing Data for Mono-window Algorithm 

CITY DAY # 
LANDSAT 
IMAGE DATE 

TAO 
CELSIUS* 

TEMP 
KELVIN* 

WATER 
gm/c3* 

WEATHER 
STATION* 

CLOUDS? 

Atlanta 211 7/30/2010 32.77 305.92 4.38 Peachtree City,  GA Yes 

Boston 146 5/26/2010 33.27 306.42 3.13 Chatham, MA No 

Chicago 255 9/12/2010 23.88 297.03 1.59 Davenport, IA No 

Cincinnati 266 9/23/2010 31.66 304.81 3.74 Wilmington, OH No 

Dallas 171 6/20/2010 33.88 307.03 3.81 Ft. Worth, TX No 

Denver 197 7/16/2010 30.61 303.76 1.26 Denver, CO No 

Detroit 186 7/5/2010 31.66 304.81 3.31 White Lake, MI Yes 

Hartford 185 7/4/2010 32.77 305.92 2.15 Upton, NY Yes 

Los Angeles 269 9/26/2010 37.22 310.37 1.4 San Diego, CA No 

Memphis 255 9/12/2010 27 300.15 2.13 Nashville, TN Yes 

Minneapolis 139 5/19/2010 22.77 295.92 0.67 Chanhassen, MN No 

New York City 185 7/4/2010 33 306.15 2.15 Upton, NY No 

Philadelphia 240 8/28/2010 26.11 299.26 1.93 Upton, NY No 

Phoenix 225 8/13/2010 38.89 312.04 1.23 Flagstaff, AZ No 

Portland 224 8/12/2010 20.61 293.76 2.37 Salem, OR No 

Providence 146 5/26/2010 32.22 305.37 3.13 Chatham, MA Yes 

Seattle 208 7/27/2010 20.61 293.76 1.36 Quillayute, WA Yes 

St. Louis 198 7/17/2010 32.22 305.37 3.86 Springfield, MO No 

Tampa 197 7/16/2010 31 304.15 4.55 Ruskin, FL Yes 

Washington DC 263 9/20/2010 23.6 296.75 1.39 Sterling, VA No 

  *Source: http://weather.uwyo.edu/upperair/naconf.html 

http://weather.uwyo.edu/upperair/naconf.html
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Appendix E: 

LANDSAT Overflight and Weather Data   

 

LANDSAT Imagery and Weather Data 

MSA LANDSAT NUMBER DATA PATH ROW 
HIGH TEMP 
(Degrees C) PRECIP 

DAY OF 
YEAR 

Atlanta LT50190362010211EDC00  07/30/10 19 36 35.00 0 211 

Boston/Providence LT50120312010146EDC00 05/26/10 12 31 34.44 1.2 146 

Chicago LT50230312010255PAC01 09/10/10 23 31 31.67 1.55 255 

Cincinnati LT50200332010266GNC01  09/23/10 20 33 35.56 0 266 

Dallas LT50270372010171EDC00 06/20/10 27 37 37.78 0.79 171 

Denver LT50330332010197EDC00  07/16/10 33 33 35.00 0 197 

Detroit LT50200312010186GNC01  07/05/10 20 31 36.67 0 186 

Hartford LT50130312010185EDC00  07/04/10 13 31 35.00 0 185 

Los Angeles LT50410362010269EDC00 09/26/10 41 36 30.56 0 269 

Los Angeles LT50410372010269EDC00 09/26/10 41 37 30.56 0 269 

Memphis LT50230352010255PAC01  09/12/10 23 35 36.11 0 255 

Minneapolis LT50260292010139PAC01 05/19/10 26 29 26.11 0 139 

New York City LT50130322010185EDC00  07/04/10 13 32 38.33 0 185 

Philadelphia LT50140322010240EDC00 08/28/10 14 32 29.44 0 187 

Phoenix LT50370362010225PAC01 08/13/10 37 36 43.33 0 225 

Portland LT50460282010224EDC00  08/12/10 46 28 28.33 0 208 

Seattle LT50460272010208PAC01  07/27/10 46 27 35.00 0.18 208 

St. Louis LT50240332010198EDC00  07/17/10 24 33 35.56 0.14 198 

Tampa LT50170412010197EDC00 07/16/10 17 41 34.44 0.01 197 

Washington D.C. LT50150332010263EDC00 09/20/10 15 33 37.22 4.66 263 
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Appendix F: 

 Table of Calculated Segregation Indices Using Census 2010 Population Counts  

Indices of Segregation for Twenty U.S. MSAs Contrasting Non-Hispanic White With Selected Minorities 

MSA 

HISPANIC ASIAN BLACK 

ID SP 
ISOLAT-
ION DELTA 

CENTRAL-
ITY ID SP 

ISOLAT-
ION  DELTA 

CENTRAL
-ITY ID  SP 

 
ISOLAT-
ION  DELTA 

CENTRAL-
ITY 

BOSTON 0.55 1.31 0.25 0.74 0.68 0.38 1.07 0.16 0.62 0.57 0.61 1.57 0.33 0.77 0.77 

HARTFORD 0.59 1.88 0.34 0.72 0.51 0.37 1.03 0.08 0.52 0.37 0.66 1.90 0.37 0.71 0.66 

NEW YORK 0.65 1.41 0.47 0.71 0.54 0.52 1.18 0.31 0.72 0.53 0.81 1.18 0.31 0.72 0.53 

PHILADELPHIA 0.62 1.62 0.64 0.74 0.67 0.44 1.10 0.14 0.58 0.49 0.75 1.67 0.64 0.79 0.73 

PROVIDENCE 0.65 1.62 0.38 0.81 0.82 0.42 1.09 0.06 0.68 0.68 0.60 1.24 0.13 0.80 0.82 

ATLANTA 0.52 1.25 0.28 0.50 0.11 0.40 1.07 0.14 0.50 -0.01 0.62 1.40 0.64 0.41 0.34 

DALLAS 0.51 1.28 0.46 0.60 0.46 0.43 1.08 0.15 0.65 0.42 0.56 1.28 0.36 0.62 0.50 

MEMPHIS 0.56 1.14 0.44 0.62 0.04 0.33 1.01 0.06 0.59 -0.24 0.69 1.34 0.75 0.60 0.13 

TAMPA 0.42 1.18 0.30 0.50 0.42 0.33 1.02 0.05 0.54 0.37 0.56 1.34 0.37 0.64 0.49 

WASHINGTON D.C. 0.48 1.17 0.27 0.62 0.44 0.33 1.06 0.18 0.56 0.15 0.67 1.45 0.61 0.61 0.57 

CHICAGO 0.58 1.50 0.49 0.67 0.57 0.42 1.09 0.17 0.61 0.40 0.77 1.81 0.67 0.75 0.70 

CINCINNATI 0.38 1.02 0.07 0.60 0.44 0.46 1.02 0.07 0.64 0.37 0.68 1.46 0.50 0.77 0.77 

DETROIT 0.44 1.33 0.70 0.54 0.49 0.49 1.07 0.12 0.60 0.51 0.74 1.82 0.70 0.72 0.70 

MINNEAPOLIS 0.43 1.17 0.13 0.66 0.65 0.41 1.14 0.13 0.64 0.61 0.51 1.27 0.21 0.72 0.75 

ST LOUIS 0.29 1.03 0.04 0.57 0.41 0.39 1.03 0.06 0.61 0.39 0.73 1.65 0.65 0.75 0.78 

DENVER 0.49 1.24 0.40 0.82 0.86 0.33 1.02 0.06 0.79 0.79 0.62 1.18 0.18 0.84 0.83 

LOS ANGELES 0.62 1.38 0.63 0.73 0.61 0.49 1.29 0.31 0.71 0.53 0.68 1.65 0.28 0.77 0.71 

PHOENIX 0.51 1.34 0.48 0.85 0.87 0.33 1.02 0.06 0.85 0.83 0.44 1.06 0.08 0.85 0.87 

PORTLAND 0.34 1.05 0.18 0.80 0.76 0.36 1.04 0.11 0.82 0.83 0.45 1.07 0.08 0.84 0.87 

SEATTLE 0.33 1.05 0.13 0.77 0.78 0.39 1.08 0.19 0.82 0.86 0.49 1.10 0.12 0.84 0.82 
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Appendix G: 

Table of Bivariate Correlations UHRI with Level 1 Variables for Multilevel Modeling Study 

 

Bivariate Correlations UHRI and Demographic and Socioeconomic Variables by MSA 

MSA BLACK ASIAN HISPANIC OWNER OCCUPANCY MEDIAN HOUSEHOLD INCOME HIGH SCHOOL GRADUATES 

ATLANTA .247** .015 .147** -.607** -.462** -.287** 

BOSTON .232** .266** .501** -.802** -.607** -.440** 

CHICAGO .227** -.052* .395** -.638** -.520** -.462** 

CINCINNATI .226** .045 .266** -.482** -.416** -.429** 

DALLAS .015 .236** .058* -.368** -.138** -.015 

DENVER .251** .134** .221** -.355** -.249** -.234** 

DETROIT .315** -.041 .163** -.497** -.620** -.491** 

HARTFORD .443** -.025 .723** -.823** -.809** -.726** 

LOS ANGELES .214** -.101** .536** -.440** -.615** -.583** 

MEMPHIS .200** .091 .003 -.486** -.312** -.170* 

MINNEAPOLIS .379** .168** .281** -.499** -.504** -.406** 

NEW YORK CITY .106** .071** .312** -.605** -.438** -.336** 

PHILADELPHIA .425** .107** .375** -.512** -.700** -.624** 

PHOENIX .075* -.138** .192** -.021 -.160** -.252** 

PORTLAND .346** .259** .374** -.572** -.500** -.326** 

PROVIDENCE .709** .388* .679** -.780** -.715** -.667** 

SEATTLE .443** .239** .372** -.679** -.487** -.306** 

ST LOUIS .323** .076 .227** -.677** -.580** -.497** 

TAMPA .219** -.135** -.016 -.318** -.420** -.216** 

WASHINGTON DC .234** -.144** .073* -.638** -.453** -.253** 
     *p<.05; **p<.01 
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Appendix H: 

Table of Spatial Autoregression Models for Twenty City Study 

 

 

Results of Spatial Autoregression Model Calculated for Twenty U.S. MSAs Using Expanded Variable Set 

 

*p<.05; **p<.01; ***p<.001 
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Appendix I: Multilevel Model for UHRI and Demographic and Socioeconomic Variables in Twenty City Study 

 

Level-1 Model                                                                                                                                                                                                                           
UHRI = B0 + B1*(Pop Density) + B2*(Race/Ethnicity) + B3*(Owner Occupancy) + B4*(Income) + B5*(HS Education) + r   
                                                                                                                                                                                                             
Level-2 Model                                                                                                                                                                                                                            
B0 = G00 + G01*(ID) + G02*(SP) + G03*(xPx) + G04*(Delta) + G05*(ACE) + u0                                                                                                                                           
B1 = G10                                                                                                                                                                                                                                 
B2 = G20                                                                                                                                                                                                                                   
B3 = G30                                                                                                                                                                                                                                     
B4 = G40                                                                                                                                                                                                                           
B5 = G50  

Mixed Model                                                                                                                                                                                                                    
UHRI = G00 + G01*(ID) + G02*(SP) + G03*(xPx) + G04*(Delta) + G05*(ACE) + G10*(Pop Density) + G20*(Race/Ethnicity) + 
G30*(Owner Occupancy) + G40*(Income) + G50*(HS Education) + u0+ r 
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Appendix J: UHRI Imagery and Demographic and Income Maps of Twenty U.S. Cities with NDVI, NDVI and LST scaled at 

the pixel level, and the UHRI, demographic and socioeconomic data at the census tract level. 
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Atlanta MSA NDVI, NDBI, and LST with UHRI
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Atlanta MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Boston MSA NDVI, NDBI, and LST with UHRI
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Boston MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Chicago MSA NDVI, NDBI, and LST with UHRI
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Chicago MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Cincinnati MSA NDVI, NDBI, and LST with UHRI
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Cincinnati MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Dallas MSA NDVI, NDBI, and LST with UHRI
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Dallas MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Denver MSA NDVI, NDBI, and LST with UHRI
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Denver MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Detroit MSA NDVI, NDBI, and LST with UHRI
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Detroit MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Hartford MSA NDVI, NDBI, and LST with UHRI
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Hartford MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Los Angeles MSA NDVI, NDBI, and LST with UHRI
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Los Angeles MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Memphis MSA NDVI, NDBI, and LST with UHRI
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Memphis MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Minneapolis MSA NDVI, NDBI, and LST with UHRI
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Minneapolis MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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New York City MSA NDVI, NDBI, and LST with UHRI
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New York City MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Philadelphia MSA NDVI, NDBI, and LST with UHRI
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Philadelphia MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Phoenix MSA NDVI, NDBI, and LST with UHRI
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Phoenix MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Portland, OR MSA NDVI, NDBI, and LST with UHRI
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Portland MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Providence MSA NDVI, NDBI, and LST with UHRI
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Providence MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Seattle MSA NDVI, NDBI, and LST with UHRI
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Seattle MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Saint Louis MSA NDVI, NDBI, and LST with UHRI
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Saint Louis MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Tampa Bay MSA NDVI, NDBI, and LST with UHRI
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Tampa Bay MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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Washington D.C. MSA NDVI, NDBI, and LST with UHRI
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Washington D.C. MSA median household income by quintile; percentage Black, Hispanic, and Asian population by tract
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